CHAPTER 19

Domain Decomposition Method and Slow Passage
Through a Hopf Bifurcation

Raymond C. Y. Chin*
Wei-min Liu**

Abstract. Slow passage through a Hopf bifurcation gives rise to a delay in
the appearance of the bifurcation. We use normal form to reveal the essence of this
phenomenon. Moreover, numerically it is found that the solution is influenced by
the numerical methods, such as the routines used, the tolerance settings, and by
machine precision. To overcome these numerical method dependent deficiencies,
we suggest a domain decomposition method for the calculation of a slow passage
through a Hopf bifurcation, by coupling a local normal form transformation and
its associated analytic representation in terms of quadratures with ODE solvers
away from a Hopf bifurcation.

1. Introduction. In conventional bifurcation theory, the control parameters
are usually assumed independent of time. In many applications, however, it is more
natural to consider that the parameters vary slowly with time. For examples, in
hydraulic devices, fluid properties such as viscosity and density change due to
the temperature variation during the entire operating time; in epidemiology, the
transmission rate of an infectious disease can vary seasonally.

Erneux and Reiss (1988) study the delay of transition to the asymptotically
stable limit cycle of a supercritical Hopf bifurcation caused by slowly varying pa-
rameter. Baer, Erneux and Rinzel (1989) use the FitzHugh-Nagumo equations as
a model to describe the mathematical and qualitative features of the slow passage
through a Hopf bifurcation. They use the WKB method to analyze the model and
point out a delay in the appearance of the bifurcation. In this paper, we use the
normal form to show the essence of the delay effect in the slow passage through
a Hopf bifurcation. It is found that in certain examples the numerical solution is
very sensitive to the routines used, the tolerance settings as well as the machine
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precisions. To overcome these numerical method dependent deficiencies, we have
developed a domain decomposition method for the calculation of slow passage
through a Hopf bifurcation, by coupling a local normal form transformation and
its analytic representation in terms of quadrature with ODE solvers away from a
Hopf bifurcation.

2. Normal form and delay in the appearance of bifurcation. The
normal form near a Hopf bifurcation of a 2-dimensional system can be written
as (see, e.g., Guckenheimer and Holmes, 1983; for convenience, our a bears an
opposite sign)

w(2)= (2 ) (@) (VL)) 0

or in the polar coordinate system

—Z—r = r(du — ar?),
‘ 2
ﬁ =w+ cp + br?
dt - /‘l’ H

where p is the bifurcation parameter. When one calculates the normal form of
a system in a practical problem, the coefficients a,b and ¢ may depend on the
bifurcation parameter p (or its multiple du) prior to further simplifications. Let

us consider the system
dr

5= r(s(t) — a(s())r?),

9 = g(s(6)) + Bs(e)r?,

where s(t) is the slowly varying parameter. Without loss of generality, we assume
that the Hopf bifurcation occurs at ¢ =  with s(f) = 0, g(0) = w # 0; and
a(0) # 0, otherwise, the Hopf bifurcation is degenerate. We further assume the
Hopf bifurcation is supercritical so that a(s(t)) > 0. Note that the first equation
in (3) is decomposed from the second and is a Bernoulli equation. If the initial
conditions are r(0) = ro > 0, and 6(0) = 6y, the square of the solution, r(?), can
be written as

(3)

rZ exp(2 fot s(7)dr)

7 3 . 4)
1+ 2rd fo a(s(€))exp(2 fo s(r)dr)d¢

[r(®)]* =
Thus 6(¢) is a quadrature:

8(t) = 8 + /0 *a(s(r)dr + /0 B(s(r))r2(r)dr. ®)

Note that under the assumption that a(s(t)) > 0, one can obtain an upper bound
for r(¢):

r(f) < roedo *9 (6)
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If the slowly varying parameter s(t) is a linear function of time £:

s(t)=sg+et, s6<0, 0<e<<]I, M
then
¢ 1
/ s(r)dr = sot + —2—5t2, (8)
0
which is negative for t € (0,2), where { = —s¢/¢ is the time when the parameter

s(t) reaches the Hopf bifurcation value 0. Thus |r(t)| < ro until ¢ > 2¢. If the
initial condition rq is very small, we can not observe the oscillation of the system
approaching the asymptotically stable limit cycle until the time becomes double
of that required to reach the usual Hopf bifurcation value.

Notice that the solution (4) and the upper bound (6) are generally true, while
the conclusion of double bifurcation time is a result of the special assumption of
the linearly varying parameter (7).

3. Asymptotical behavior. Now that the regular limit cycles are not im-
mediately observed when the slowly varying parameter s(t) passes through the
bifurcation value 0, a very natural question is whether they will be observed when
the parameter becomes large. Assume the slowly varying parameter s(t) is mono-
tonically increasing from a negative initial value sq, and j;)t s(7)dr tends to positive
infinity as t approaches positive infinity. Moreover, it is reasonable to expect that
the other parameters will change slower than s(¢), e.g.,

NN CO)

t—i-{-oo ,s(t) - (9)
d [a(s(t)
500 db [ s(t) ):‘ =0. (10)

Under these conditions, we can show that r(2) is asymptotic to 1/s(t)/a(s(?)) —
the “usual” amplitude of the oscillation. Let #; be a value of ¢ such that s(¢;) > 0.
According to (4), for t > #4

ty ¢
7%621; s('r)dre2 '];1 s(r)dr

14202 [ a(s(€))e* Jo * g 1 o2 JE a(s(€)é I3 stryar g

" t
ngZ_}: s(T)dTeZ '];1 s(r)dr

[r®)) =

3 : 7 -
14203 [ a(s(€))* Jo g 123 [* aae))e? fo” ar L g

'Since at(s(t)) is bounded away from zero, the denominator of the above expression
is dominated by the last term for large ¢. Therefore [r(¢)]~? is asymptotic to

2 ¢ als(©) " ag

3
e2 J; . s(r)dr

(11)
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Denoting
t ¢
$(t) = / a(s(@)e "D, (12)
and \
(1) = o O (13)

we can show that ¢'(t) = a(s(2))¥(t), ¥'(t) = 2s(¢)¢(t), and [r(¢)]~2? is asymptotic
to 2a(s(t))é(t)/¢'(t). Integration by parts gives

é(t) = / ) g

2(0) (19
_ als@) | L [ werda(s(en/oe)
2s(¢) &=t 2 Ju |

The first term is dominated by +(t)a(s(¢))/(2s(t)). Hence
e SO/s@) = 1/r2) _ S $O)dla((6)/5(8)]
DT a0 e g@a0)/50)
According to l’Hospital’s rule, the above limit is equal to that of
B(®)la(s()/s@) ___lal@)s@y g
p(Ola(s(®)/s@) + ¢'(t)a(s(2))/s()  la(s(£))/s(t))! + 2a(s(2))

Form (10) and the assumption a(s(t)) is bounded away from zero, we can see
that the above expression approaches zero. Therefore, r(t) is asymptotic to

Vs(t)/a(s(t).

4. Numerical calculations with standard ODE solvers. Let us consider
a simple example:

@)= ) E) (s () @

which has the polar coordinate form

dr

(15)

—— — 2

7 r(s — ar®), 18)
@ _

a -

where a and w are positive. Obviously, when s > 0 there is a stable limit cycle
represented by r = 1/s/a. If s is a slowly varying parameter of the form of equation
(7), and if the initial amplitude ro is small, then the amplitude of oscillation cannot
be larger than r¢ until ¢ > 2 = —2s/e. However, if we use standard ODE solver,
e.g., IMSL routines, we find that the result is very sensitive to the tolerance for
error control in certain region. On a VAX 8500, we use the IVPRK which is
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an initial-value problem solver using the fifth- and six-order Runge-Kutta-Verner
method. Parameters are set as w = 0.06, a = 1.0, sp = —1.0, € = 0.001, time
changes from 0 to 4000 and initial conditions are z39 = 0.02, 229 = 0. If s were an
ordinary parameter, orbits should approach stable limit cycles when ¢ > ¢ = 1000.
Since s is a slowly varying parameter, the oscillation with amplitude larger than
0.02 should be observed for ¢ > 2t = 2000. ’

However, if the tolerance is set less than or equal to 0.8 X 10™%, no oscillation
is observed (Fig. 1la). If the tolerance is set larger than or equal to 0.24 x 10~
the large amplitude oscillation can start to be observed for ¢ around 1750 (Fig.
1b), which is obviously inconsistent with the conclusion obtained from the exact
solution of the equation.

Figure 1. Numerical solution to system (17) and (7), where a = 1,
w = 0.06, sg = ~1, e = 0.001, 219 = 0.02, and zop = 0. Horizontal axis
represents the slowly varying parameter s (from —1 to 2) or time ¢ (from 0
to 3000). Vertical axis represents z;. The intersection of the vertical line
and the horizontal axis (s=0) represents the Hopf bifurcation parameter
value when s is not time dependent. For slowly varying s, theoretical
analysis in the text shows that large amplitude oscillation should occur
when s > 1 or ¢ > 2000. (a) Use a standard ODE solver in IMSL. When
the tolerance is too small, usually no significant oscillation is observed.
(b) Use a standard ODE solver in IMSL. For some tolerance values, the
large amplitude oscillation appears earlier than the theoretical delay time.
(c) Use domain decomposition method given in the text. Delay time is
consistent with theoretical value.
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It is not hard to explain these results. When tolerance is too small, the
intermediate result can hit the zero machine number because the origin is an
asymptotically stable point for s < 0. Even though the origin becomes unstable
for s > 0, if there is no further perturbation, the orbit can not leave this unstable
equilibrium point. When the tolerance is too large, there will be significant inter-
mediate errors, and they can play the roles of perturbations at the time later than
the initial time 0, (with an effect of reducing the absolute value of sg), and this
can make the delay effect shorter. Thus the large amplitude oscillation appears
earlier than the theoretically predicted time.

An interesting phenomenon is that when the tolerance is between 0.16 x 103
and 0.23 x 10~3 no large amplitude oscillations are observed (Fig. la); when
the tolerance is between 0.9 x 10~ and 0.15 x 10~2 the oscillation appears again
around ¢ = 1750.

We realize that this kind of phenomena is sensitive to the floating point sys-
tem, the routines used, the tolerance settings (the above results are obtained in
terms of absolute error) and some other features in the computation.

On VAX 8500, we also use the fourth-order Runge-Kutta routine ODEINT
(which calls RKQC and RK4) in Numerical Recipes by Press, et al. (1986). Pa-
rameters are set the same as before. The ODEINT subroutine is called for each
period of 20 time units within which the step size is adjusted by the error control
tolerance. When tolerance is less than 0.61 x 107°, we don’t see any large ampli-
tude oscillation (Fig. 1a); when tolerance is more than 0.62 X 10™%, we see large
amplitude oscillations and the starting time ranges from 1720 to 2030. For toler-
ance between 0.61 x 10~% and 0.62 x 1074, the asymptotic behavior of the system
is quite strange. The set of tolerance values where no significant oscillations are
observed is somehow like a fractal. We can find many fine structures. For exam-
ple, between 0.62 x 10~% and 0.39 x 10™* most numerical calculations show the
existence of large amplitude oscillations with starting time ranging from ¢ = 1720
to t = 2090; however, we observe no oscillation for most tolerance values between
0.63 x 1075 to 0.9 x 10~%; but for 0.7 x 10~° we observe oscillation again. We
observe some other bands with no significant oscillations, they are 0.269 x 10~ to
0.27 x 1074, 0.399 x 10~* to 0.400 x 10™%, 0.50 x 10~* to 0.51 x 10~%, 0.59 x 10~*
to 0.61 x 10~%, We consider it as spurious chaos-like behavior in numerical calcu-
lations. As we run the same program on other machines, similar fine structures
can be seen but at different tolerance values.

5. Domain decomposition method. In order to avoid the sensitivity of
standard ODE solver on tolerance for this special kind of problems we suggest
to make use of the exact solutions (4) and (5) to the normal form in the slow
passage through Hopf bifurcation region and use standard ODE solver away from
this region. We can integrate the numerator and denominator of (4) in terms of
trapezoidal rule for ¢ between 0 and 2f = —2s¢ /¢ and then switch to the standard
ODE solver for ¢ > 2f. The integrands are very close to zero when the integral of
s, (8), remcins negative and away from zero, that is, when ¢ is in a neighborhood
of ¢. Therefore we can use large steps for ¢ close to £ and use small steps for ¢
close to 0 and 2f. Fig. 1c is the result obtained by using trapezoidal method
for ¢ between 0 and 2f = 2000 and then using routine IVPRK in IMSL. Only 11
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mesh points (0, 62.5, 125, 250, 500, 1000, 1500, 1750, 1875, 1937.5 and 2000) are
used for the trapezoidal method, therefore the speed is fast and there is neither
spurious short delay effect nor spurious infinitely long delay effect.

6. Transformation to normal forms. In order to extend this method
to other problems, we must overcome the tedious computation associated with
the normal form transformation. To alleviate the tedium of hand computation,
Rand and Keith (1985) and Rand and Armbruster (1987) have developed inter-
active programs for center manifold and normal form calculations based on Tay-
lor series expansions using the symbolic algebraic manipulator MACSYMA. For
complicated Hopf bifurcation problems such as FitzZHugh-Nagumo neuron model
(Baer, Erneux and Rinzel, 1989), and infectious disease model with non-bilinear
transmission rate (Hethcote and Levin, 1989; Liu, Hethcote, and Levin, 1987;
Liu, Levin, and Iwasa, 1986), the “usual” Taylor series expansion method even
with the aid of symbolic algebra is extremely time-consuming and, furthermore,
it should often be interfaced with numerical calculation, We have developed in-
stead a matrix formulation of the normal form transformation to calculate straight
forwardly the coefficients, a, b, ¢ of (1) as well as those of the near identity trans-
formations (Liu and Chin, 1991). This method circumvents the use of Taylor
expansion for each particular problem and is ideally suited to numerical compu-
tation. The core of the calculation involves a series of matrix multiplications. In
the case of a slow passage through a Hopf bifurcation, the matrix method is the
method of choice as the solution of the normal form equations in polar coordinates
(3) involves integrals with slowly varying integrands, for example, fot s(t)dr and

fot a(s(§)) exp(2 fOE s(r)dr)d€. They can be evaluated by quadrature methods, e.g.,

/ot s(r)dr = 2"’: Aes(7x)-

k=1

Since s(7) is a slowly varying function of 7, only a relatively small number of
points is needed for an accurate evaluation of the integrals.
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