CHAPTER 3

Domain Decomposition Method with Nonsymmetric
Interface Operator

Frédéric' d’Hennezel*

Abstract. An iterative substructuring method for problems in structural analysis is
presented. A new elimination procedure for the interior unknowns in each substructure is
introduced resulting in a nonsymmetric interface operator; the GMRES algorithm leads to a
method having the same convergence properties as the Neumann-Dirichlet algorithm as well
as allowing for more general decompositions. Numerical tests performed on a CRAY 2 are
presented, illustrating the efficiency of the method compared to a global Cholesky factoriza-
tion or global preconditioned conjugate gradient using incomplete Cholesky factorization.

1. Introduction. We consider an elliptic boundary value problem posed on a domain
! divided into non-overlapping subdomains. The elimination of the interior unknowns
in each subdomain of € allows the global problem to be transformed into-a problem on
the interface between these subdomains. The introduction of an operator acting on the
subdomains through boundary conditions on the interface —called interface operator—
Jjoined to an iterative method, allows for global problem to be solved by a sequence of
independent problems on each subdomain. The choice for this interface operator determines
the numerical efficiency of the resulting iterative substructuring method.

A three-dimensional linear elasticity problem is considered here. In such problems,
displacement boundary conditions are most often considered on a small part Ty of the
boundary of the solid occupying the domain 2. Thus, some of the subdomains might have
boundaries distinct from I'y. We propose here a new approach for general applications
which proves efficient and easy to implement in the present case. It generalizes the methods
presented in Marini & Quarteroni [1988], Bramble, Pasciak & Schatz [1986], Bjorstad &
Widlund [1986], all using a Neumann-Dirichlet approach. Along the interface, we consider
Dirichlet boundary conditions in one subdomain and Neumann boundary conditions in the
next subdomain. The difference here is that we have one “Neumann interface” and one
“Dirichlet interface” for a same subdomain. Consequently, any local problem (i.e. on a
subdomain) is well-posed, in particular when its boundary is distinct from Tg.

A formulation of the interface operator is given in §2 and its nonsymmetry is illustrated.
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In §3 we show how the GMRES method is employed with an appropriate preconditioner,
leading to a new Neumann-Dirichlet algorithm. Numerical tests on large three-dimensional
elasticity problems will illustrate the efficiency of our approach in §4.

2.1 The global problem. The method described in this paper can be applied to
any elliptic boundary value problem. In particular, let us consider three-dimensional linear
elasticity problem applied to an homogeneous isotropic elastic body occupying a domain Q.

Let Ty be a part of the boundary of Q and I'; = 82 \To. Let A and p be the Lamé
coeflicients of the elastic body; then A, the elasticity tensor, is given by

Aiikt = A6 + (661 + Sabr)-

Hereafter, e;;(v) = 3(8iv; + 8;v;) represents the linearized strain tensor for a displace-
ment vector field v = (1,72, v3); the linearized stress tensor is then given by Hooke’s law

o(v) = A:e(v).

The unknown displacement field u is the solution of the following variational equation:

findueV
@ {/na(u):e(v)dz = Lf.vdz-!—/r gvdl VveV,

where the space V is defined by
Ve {v e (B @] 10/r, = o}

and the applied forces f € [L2(Q)]® and g € [L3(T1)]°.

Thanks to Korn’s inequality in [H*(2)]° space, combined with the assumed boundary
condition of place, the bilinear form associated with equation (1) is coercive so that it has
a unique solution u € V.

Consider a decomposition of the domain € into non-overlapping subdomains; as in
the case of the Neumann-Dirichlet algorithm (see Bjorstad & Widlund [1986] or Bramble,
Pasciak & Schatz [1986]) we suppose that we have a red-black ordering of the subdomains
of ; the union of the red subdomains will be denoted ; and the union of the black
subdomains . For the sake of clarity, we describe the algorithm in the case of non-
crossing interfaces (i.e. two different subdomains of Q; or £, do not have a common vertex
or edge). We also suppose in a first step that each subdomain has a part of its boundary
on Ty. The general ease is discussed in §3.3.

The interface between the subdomains is defined by § = 89Q; N Q3. As shown in Fig.
1 for the 2-D case, each connected component of § is denoted by either Sy or Sp.

Consider a conforming finite element discretization of problem (1). All the sibdomains
are further divided into elements. The common assumption in finite element theory thai

all elements are shape regular is adopted. In the resulting finite dimensional subspace V?
of V, problem (1) becomes

@ { find uk € V*
olu™) : elvh) de = k k h
jg(u} e(v") da Lf.v dz+L1g.vﬂ Vo e V"

'The trace operator on 7, where -y is any part of 9Q;, is denoted by ¢7. For i = 1,2, let
us infroduce the notations

V= {o=wjague v},
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Qp Sp Q SN

2y Sp Q,

Figure 1: Decomposition of  with non-crossing interfaces in 2-D.

VAP = {v € V& 150000y, 0} , VM = {v € VP trSn09%iy, _ 0}
and the spaces of discrete trace functions on Sp and Sy
Vsp, = {w =trPy; ve V"} ,Vey = {w =tr%y; ve V"} .

The basis functions of V;* that are non-zero on the interface S correspond to the interface
unknowns, and the remaining ones will correspond to the interior unknoumns.

2.2 Elimination of the interior unknowns. In order to solve problem (2) using a
domain decomposition method, we first need to pose the problem on the interface §. Let
ul = uh/q,, i = 1,2 be the solution restricted to §;; we write

(3) u? = "’:! + ”;H »
where u is the solution of the following equation

{ u} € VAP

(4) / o(ul):e(v)dz = / fodz + gvdl' Vv e VD,
j¢8 Q T'1noeQ;

We note sV = trSvu] — trvuf € V5, and ¢P € V3, the linear form

Vs, — R
L PR -gUg,.a(uf)=etﬂeﬁdx-/gf-R*“”“/r,g'R‘“‘r]

where R; is a lifting operator from Vs, onto V}*. From the definition of u}, we can see that
¢¥ does not depend on the chosen lifting operators R;.
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It now remains to compute uff € V} such that u/ + u¥, i = 1,2 are the solutions of (2)
on §3;, with
1r5%Y5D(yf 4 uff) = 1rSVYSD (uf 4+ i),
From the definitions of sV and ¢ above, it means that for all v € V* with v; = v/q,, the
functions uf € V}, i = 1,2 have to be solutions of

2
(%) S [, ouF) - e(w) de =< 42,1500 >,
=] VAN
with
trvafl = trSnyll _ N
(6) trSp uf = trs’-’uf s

where < ., . >gy, denotes the dual product between V3, and Vs,
From (5)-(6) one can see clearly that functions uf depend only on ¢P and sV which
belong respectively to V3, and Vg,; we thus have an interface problem.

2.3 Computation of uf, i = 1,2 as the solution of an interface operator. For
any (r,p) € Vs, x V¢, let u;, i = 1,2 be the solution to the following problem:

zn eV
) ]‘;i o(u):e(v)de = <p,irNo>g. Woe VP
0y =y,
We note s; = tr%¥u; € Vs, and ¢; € V3, the Linear form
Vs, — R
4: { T Uf‘!. o(u;) : e(Bit) do— < p,trSN Rt >SN] .
The interface operators A; are then given by:

Vs x V& — Vs x Ve
8 A: D SN N Sp
® : { ) — (50
with (r,p) and (s;,q;) defined above.

We also need to define the following operators to take into account the change of the
sign of the outer unit normal vector between the subdomains of 21 and Oy,

Vsp X V2 —s Vg, x V2
g Is, : D Sx D Sy
® ox { () —  (r,-p)
and

Vo, X VI — Vs, xXV2
10 Io : N Sp Sy Sp
0 S { np) o (r-p)

From these definitions we can formulate the global problem (2) in terms of the interface
unknowns:

Lemma 2.1 uf, i = 1,2 are the solutions of (7) if, and only if, (r,p) € Vs, X V2. is
the solution of ’ o

(1) (43— Isp 0 Ay 0 I, )(r,p) = (a7, 4P).
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Proof. From the definitions of A;, Is,, and Is, we have

8g— 8 =8V
(A2 —ISD oA, OIS’N)("',P) = (3N7 qD) = { q: + q; = qD

so that the corresponding solutions u; of (7) are solutions of the interface problem (5)-(6)-
O

2.4 Properties of the operators A;. For all (r,p) € V5, X Vg, we note

(sf,qf) = Ai(r,0) € Vs, x V5, and (sf,¢f) = Ai(0,p) € Vsy X Vg,

3
Using the above notation we can write A; in terms of a two by two block matrix
ADD AND
ADN ANV
k]

(12)

with
APPr =g ANPp=gf APNr=o AMNp=4.

Lemma 2.2 The operator A; defined in (8) has the following properties:
(i) A; is invertible and its inverse is defined by interchanging Sp and Sy,
(i) LAV = 4PV,

(iii) The symmeiric part of A; is given by

AP ¢
(13) S4; = ( 0 AﬁVN ’
where S4, is positive definite.
proof. Let (s;,¢) = Ai(r,p) and #; be the solution of the following problem
i eV
o(@;) e(v)dz = < g;,trPv>g, Vve VAN
'trSN ; = 8.
Then, from the definition (8) of (s;,¢;) and the corresponding solution u; of (7) we have

i —u; € V}hN
/ o(@ii—w):e(v)de = 0 Voe VPV,
n.

and thus #; = u; so that assertion (i) is proved.
In order to prove (ii), let us first define uf and u] which are solutions of
(14) /ﬂ o(uf):e(v)dz = <p, Ny > Vo e VPP,
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and
uf € VA

(15) /ﬂ o(u]):e(v)dz = 0 VoeVPP
“trSoul = 7.

Then we have

< Afv D »)yr>sp= /‘; o(ul) : e(Rir) dz— < p, trSwn (Rir) >3y -
If we choose R;r = ul

< AyD(p)’r >sp=—< P,tTSN("f) >SN= -<p A;DN(T) >SN”

property (ii) is proved.

Assertion (iii) is a consequence of (ii), and from the fact that AP? and ANV are sym-
metric positive definite operators. Indeed, AN is the Poincaré-Steklov operator in terms
of Agoshkov [1988], associated with Sy, and APP is the inverse of that same operator as-
sociated with Sp. O

Lemma 2.2 allow us to define a scalar product in Vsp X Vg, associated with the sym-
metric part Sg; of A;; for any (r,p) and (s, q) € Vs, X V3, we note

(16) [(T,p), (8, q)]i =< AiDDr7s >Sp +< Aﬁva7q >Sn -

The following lemma generalizes the theorem proved in Bramble, Pasciak & Schatz [1986]
or Bjorstad & Widlund [1986].

Lemma 2.3. There exists two positive constanis independent of h such that for all
(r,p) € Vs, x Vg,

(17) Cil(r: 2 (7, P2 < [(r,2); (. )1 < Cal(r, p); (1, )l

The proof of this result uses the continuity of the trace operators on Sy and Sp and a

priori estimates for the solutions of problems (14) and (15) with constants independent of
h. Using the same arguments, we can show that

Lemma 2.4. The operators AND, i = 1,2 are bounded with constants C; independent
of h for the norm associated with |., k%

(18)  V(np)eVs, x Vg, | < AMP(p),r >, |2 < Ci(r, 0), (r, 0)L{(0, p), (0, p)):-

3.1. Domain decomposition algorithm. In order to solve problem (11) efficiently
with an iterative method, we need to define a preconditioner. Suppose that we set Sy =
Pand 5p = § = 80, n Q3. Then (43— Is, 0 Ay o I, ) becomes (A2 —Is 0 4) =
(A2 + A;) which is the Schur complement matrix. A preconditioned conjugate gradient

algorithm can be applied to (43) (A2 + A;) and leads to the classical Neumann-Dirichlet
algorithm.



DOMAIN DECOMPOSITION METHOD 43

In the general case we have Sy # @, but we can apply the same idea and use A 1 as
a preconditioner (see lemma 2.2 (i)). Problem (11) then becomes: find (r,p) € Vs, x V3,
solution of

(19) [1d- 45 0 Is, 0 Ay 0 I, | (r,p) = 45 (s",6P).

As we have a product of nonsymmetric operators, we will solve (19) using the GMRES
method. This method, introduced by Saad & Schultz [1986], has been shown in practice to
be powerful for a large class of problems. Using the notation B = Id— A7 o Is; 0 Ay oI,
and b = A7(sV,¢”) the GMRES method for solving the linear problem B(r,p) = b can be
described as follows:

[.,.] denotes a scalar product over VSD X Vs and ||.|| = /T, ] the corresponding norm.
For an initial approximate solutlon z° = (»°, 1\6) we have the initial residual res® = b —
B(r%,p°). At the k** iteration, if F minimizes ||res® — B(z)|| over the Krylov subspace

K:($0) = span{zov Bzoy Ty Bk—lxo}9

then z° + zF is the k*” iterate with a residual res* = |jres® — Bz¥||. The method converges
when [|res*||/||res?|| < ¢ for a given precision «.

An orthonormal basis of the Krylov subspace is constructed by an Arnoldi process,
thus needing the storage of k vectors to reach the k** iteration. This is a handicap for
our method in comparison with symmetric formulations using preconditioned conjugate
gradient methods.

However, in practice we take advantage of the fact that the unknowns are associated
only with the interface. For example in a three-dimensional problem, if the global number of
unknowns is proportional to N3, then the number of unknowns associated with the interface
problem is proportional to N2. For this reason, GMRES method can be performed at a
reasonable cost.

We can also point out that when a domain decomposition algorithm is applied to ill-
conditioned three-dimensional elasticity problems (see for example Roux [1990] or Le Tallec,
De Roeck & Vidrascu [1990]), a reorthogonalization procedure is used with conjugate gra-
dient to ensure a faster convergence of the method. This reorthogonalization, of course,
also requires the storage of a Krylov subspace basis.

3.2 Convergence. If B is positive definite with respect to [., .], according to the of Saad
& Schultz [1986] theory, the rate of convergence of the GMRES method can be characterized
by

/\2 k/2
ures" - B(zk)” < (1 - F) "res° - B(zo)ll, VE<L1,
where [Bu,ul 1Bl
%, U u
Ap= in 2 and Ag= su .
B = oo [u,4] B o Tl

This convergence result does not seem easy to employ in the general case. But if each
subdomain of Q; has, either its boundary distinct of Sp, or distinct of Sy, we have AYP = 0.
In this particular case A; = S4,. If we consider the GMRES method with respect to the
scalar product [.,.]; defined in (16), from lemma 2.3 and 2.4 we can show that Ap and Ap
are positive constants independent of h.

In the general case, we could use S4, as preconditioner for problem (11), and it would
also be possible to show the existence of Ag and Ap using the same technique. However, it
leads to another algorithm with the additional computation of Ay(r, p) for a given (r,p) €
Vsp, X V3, at each iteration, and is therefore not interesting in practice.
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3.3 The use of the nonsymmetric formulation with general decompositions.
For the case where only one or few of the subdomains have a part of their boundaries on
To, it is not possible to use the classical Neumann-Dirichlet algorithm. In our appraoch,
if the interfaces Sy and Sp are chosen carefully, the computation of B(r,p), for a given
(r,p), at each iteration of the Arnoldi process is possible. Indeed, if we suppose that each
subdomain of ©y, whose boundary is distinct from Ty, has a part of its boundary on Sp the
problem corresponding to the computation of (s,q) = 4; o Isy(r,p) is coercive due to the
assumed boundary conditions of place. In the same way, if each subdomain of 23, whose
boundary is distinct from T'o, has a part of its boundary on Sn, the problem corresponding
to the computation of A7 o I, (s, q) is also coercive (see lemma 2.2 (i)). Then, for a given
decomposition the user has to define a “coloring” of the interface § in Sp and Sy.

For the theoretical aspects of the method in the general case, it is possible to set the
operator A; on the quotient spaces V,/R(y) (v = Sp or Sy), where R(7) is the space of rigid
displacement on 7. In these spaces, lemmas 2.1 through 2.4 remain valid (see D’Hennezel
[1991]). As a Krylov subspace method is used, the algorithm converges in the image space
of B that contains the domain of definition of Aj.

It is possible to formulate the same method in the case of interior subdomains and cross-
ing interfaces. The remaining preconditioner is still local (i.e. it only exchanges information
between neighbouring subdomains). The idea in this case is to have two unknowns in the
interface problem for each degree of freedom corresponding to a mesh node that lies on an
edge or vertex of a subdomain; one unknown is associated with Vs, and the other with Vg,

(see D’Hennezel [1991]). It leads to an easy-to-implement algorithm and gives good results
as shown by the following numerical tests.

4. Numerical tests. The numerical implementation of the algorithm presented in
§3 was done within the Modulef finite element library (cf. Bernadou et al. [1985]), in
multiproblem and multielement framework. The local problems corresponding to boundary

value problems (7) are solved with a Cholesky method. The following tests are performed
on a CRAY 2 computer without multitasking.

Test 1. Let us consider the three-dimensional elasticity problem described in §2 corre-
sponding to the geometry in Fig. 2. The domain is divided into 16 subdomains. One ex-
tremity of the beam remains fixed, the other extremity is submitted to theload g = (0, g,, 0),
where g, is constant (the y axis being orthogonal to the axis of the beam). Young’s modulus
E= ’-'Lsx’-\_%?ﬂ and Poisson’s ratio v = ﬂf\m are set to E = 2.10% et v = 0.3.

On Q the space V* is composed of Q2 hexahedra . The finite element mesh contains

108 elements and 679 nodes in each subdomain (2087 degrees of freedom). There are 5985
degrees of freedom on the interface.

Nonsymmetric domain decomposition method.

Number of iterations (residual < 107%): 47

CPU time for the factorization of the 16 matrices: 58 5

Storage of the 16 matrices: 8,635,856 words

CPU time for the GMRES method: 32s.

Global Cholesky method.

CPU time for the factorization: 129 8.

Matrix storage: 14,568,077 words

For this decomposition neither the classical Neumann-Dirichlet method or a global pre-

conditioner are convenient. On the other hand, we could have used the algorithm introduced
by Bourgat, Glowinski, Le Tallec & Vidrascu [1988]. It has the advantage of being an al-



DOMAIN DECOMPOSITION METHOD 45

Figure 2: The domain of test 1 its decomposition.

gorithm of general application; it does not require a red-black ordering of the subdomains
(that is of course not always possible), neither a choice of interfaces Sy and Sp. However,
they need to solve two different boundary value problems on each subdomain at every it-
eration; one with Dirichlet boundary conditions and then the other corresponding to the
preconditioning step with Neumann boundary conditions. Thus, there are two matrices to
store and factorize in each subdomain.

Test 2. The three-dimensional elasticity problem is now applied to a domain  divided
into 32 subdomains with crossing interfaces, as shown in Fig. 3. Here again, one extremity
of the beam remains fixed. The loading is achieved with f = (0, £;,0) and f, constant; we
keep E = 2.10° and v = 0.3.

In Q, the space V* is composed of Q2 hexahedra. The finite element mesh contains
125 elements and 756 nodes in each subdomain (2268 degrees of freedom). There are 14820
degrees of freedom on the interface.

Nonsymmetric domain decomposition method.

Number of iterations (residual < 10%): 137

CPU time for the Cholesky factorization of the 32 matrices: 190 s

Storage of the 32 matrices: 25,095,808 words

CPU time for the GMRES method: 217 s.

Global Cholesky method.

CPU time for a global Cholesky factorization: 1059 s.

Matrix storage: 75,645,101 words

Preconditioned conjugate gradient (ICCG).

Number of iterations (residual < 10~¢): 138

CPU time (incomplete factorization + iterations): 720 s

Storage of the global matrix and of its preconditioner: 17,844,000 words.

Here the number of iterations for the GMRES method is high, but the corresponding
CPU times are still good. This implies that for three-dimensional problems, giving rise
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Figure 3: The domain of test 2 its decomposition.

to matrices with large band-widths, our method which uses a local preconditioner can be
efficient with a relatively large number of subdomain. For a given global problem, the
number of subdomains has to be chosen so that the number of unknowns on the interface
remains small in comparison with the total number of degrees of freedom. In this test, the

storage of Krylov subspace basis for the GMRES method requires 137 iterations x 14,820
unknowns = 2,030,340 words.

5. Conclusion. The efficiency of a domain decomposition method relies on both the
numerical efficiency of the proposed algorithm and on its parallel implementation. Though
tests 1 and 2 are only sequential, they show that a careful parallel implementation should
lead to a powerful method on a multiprocessor machine.
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