CHAPTER 20

Domain Decomposition and PDE with Periodic
Boundary Conditions

Zdensk Dostal*

Abstract: Problems with periodic boundary conditions arise naturally when-
ever we deal with repeating structures. At the same time, periodic boundary con-
ditions yield some complications for standard solvers. The reason is that the band-
width of the stiffness matrix of the system with enhanced boundary conditions may
increase two times as compared with that without boundary conditions.

Using a geometrical approach developed earlier, we describe a variant of do-
main decomposition algorithm for solution of such problems. To assess the perfor-
mance of the algorithm, we report our resulis of model problem analysis and of the
solution of a mining engineering problem.

1. Introduction. Though most of the current research in the Domain De-
composition Methods has been motivated by the development of parallel computing,
it seems that the method offers also some alternative to common sequential algo-
rithms for the solution of systems of linear equations arising from the discretization
of partial differential equations.

In this paper, we show that even the basic Schur complement algorithm may
be more efficient than the standard elimination in the solution of problems with
periodic boundary conditions. In particular, it turns out that the idea to reduce
iterations to some interface is useful also in our case, where only one region is
actually present in the computation. However, we belive that we are still entitled
to speak abont domain decomposition as an infinite number of regions is involved in
formulation of such problems. To give a simple geometric insight into the algorithm,
we describe the algorithm in terms of preconditioning by conjugate projector [1}.
The efficiency is studied on a model problem and on the solution of a mining
engineering problem.
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2. Algorithm. Suppose we are given a system of n linear equations
Aoz = b 1)

arising from the discretization of a system of elliptic partial differential equations
in bounded region  in R with the boundary &%, possibly with enhanced Dirichlet
boundary conditions. We are to find the solution of (1) which satisfies

T =2mei, t=1,00,p, p=n—m. (2)

The unknows involved in (2) may correspond to nodes on 5Q which are affected by
the periodic boundary conditions.

For any k natural, let J; denote the identity matrix of the order k. Consider
a decomposition of the set of indices into three sets {1,---,p},{p+1,---,m} and
{m + 1,---,n}, which induces a block structure on Ao, 4o = (4;;), %, = 1,2,3.
Observe that the solution of (1, 2) is given by # = Upy, where

I, ©
Up= 0 ] m—p |
L, ©

Ug‘Aoon = Ug’b

whose matrix generally does not have the band structure of A,. For simplicity, let
us suppose that Ay is invetible and put A = UT AUy, b = U bs.

and y satisfies the system

A: Definition of Auziliary Subspace and Initial Correction

0 v-(2,
(i) Find the factorization

LLT = UTUT AoUoU = UTAU = As,.
(i) yo = UL-TLUTS.

Notice that P = UL-TL-*UT A is an A - conjugate projector and that yo = PA™'5.
For convenience, put Q@ = I — P and denote by V the range of Q.

) , where O is the p X (m — p) zero matrix.

B: licrations

(iv) i=0, pp=ro=b— Ap.

(v) Ir; =0, then put y = y; and stop.
(vi) «=Qpn.

(vil) o =r70/df Ag.

(vill) pipa =3+ g

(ix) rin=rn-wdg (=b-Aga)
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(x) B =rinda/df Ag.
(xi) pis1 = riss — Bipic
(xii) Puti=i+1 and return to (v).

Notice that the iterations generate the same residuals as the conjugate gra-
dient method for the solution of system AQy = ro with y = 0, where only the
positive definite restriction AQ | AV of the symmetric matrix AQ (considered here
as a linear mapping) to AV takes part in the process of solation. Hence the error

of iterations may be estimated by the spectral condition number x(AQ | AV) of
AQ | AV. Some other results concerning this algorithm may be found in [1].

8. Performance of the Algorithm. Consider the problem

-Av = binQ, 3)
v = 0onl,, @
v(z,0) = u(z,1)onT,, (5)

where Q = (0,1) x (0,1),I'y = (0,1) x (0,1), and T';, = (0,1) x (0, 1).

First we define a square grid for discretization of (3). Put h = 1/p,p a
natural number, 2; = #h,y; = th,i = 0,1, .-, p. We shall use a horizontal meshline
ordering,

The central difference approximation with enhancing of (4) yields the system
Aoz = by, where

B-1 E 0
A=h3| E* C D |, O=tidiag(~I1,B,~I),
0 DT B-I

DT=(0$"'x0:"Ip—1)1 E=(_Ip—1:0:“':0):
B = tridiag(—1, 4, —1).

The matrix B is'of the order p — 1; the matrices C, D, E have p — 1 block rows,
each block with p — 1 rows.

Arising problem may be analysed in detail. In particular, it may be shown
that the Schur complement involved in the iterations of the previous section is given

by
A=2B-2I-(E" + D)C™Y(E + D7)
and that
x(4) < 155572
Details may be found in [2].

Now we are able to assess the performance of the method. In particular, for
P = 100 we get x(4) < 155, which, substituted into the simplified Chebyschev etror
bound for the eucliden norm of the residua

Inis2 (50 Il ®
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implies that for reduction of | r | by the factor of 10~ one does not need more than
48 steps of the above algorithm. In this case the execution of the step A requires less
then 1007 x 100 = 10® flops for the factorization and about 1002 x 2 x 100 = 2 x 10°
flops for the initial correction while 48 stepe of iterations of the part B of the
algorithm do not require more then 48 x 100% x 220 2¢ 10® flops. The finite solution
of the problem requires about 4 x 10® flops, two times more than the presented
algorithm. Our experience shows even better results, probably because the bound
(6) is a bit pessimistic and does not reflect a nice self-accelerating property of the
conjugate gradient algorithm. We have tested the convergence of the algorithm also
on a mining engineering problem — cavern in a field of caverns of Figure 1 discretized
by irregular 30 x 30 grid. Only own weight has been considered. The number of
iterations to reduce the residuum by 10~* was equal to 36, which required about
the same time as initial decomposition. The solution required about half the time
required by the standard solver.

We conclude that there are problems for which the algorithm presented is
competetive.

Figure 1. A cavern in a field of caverns.
REFERENCES

1. Z. DOSTAL, Projector preconditioning and domain decomposition methods, Appl.
Math. and Computation, 37, 2 - II (1990), pp. 75 ~ 81.

2. Z. DOSTAL, Numerical solution of P.D.E. with periodic boundary conditions,
submitted to Computing,.



