CHAPTER 23

Domain Decomposition to Solve Layers and Singular
Perturbation Problems*

Marc Garbeyj

Abstract

Our aim concerns the numerical computation of stiff nonlinear PDEs that are ap-
propriate for singular perturbation analysis. We present two domain decomposition
methods that numerically solve for the layers of the singular perturbation problem.
These numerical methods use at different stages the information given by the asymp-
totic analysis. We will consider as a test problem the simplified model of reacting
flow of Majda {13].

Resumé:

Nous etudions le calcul numerique de problemes raides qui relevent d’une analyse de
perturbation singuliere. Nous presentons deux methodes de decomposition de do-
maine qui resolvent les couches limites du probleme de perturbation singuliere. Ces
deux methodes numeriques utilisent a differents niveaux les renseignements obtenus
par une analyse asymptotique. Nous considerons comme probleme test le modele de
flot reactif simplifie de Majda.

1 Introduction

Our aim concerns the numerical computation of stiff nonlinear PDEs that are relevant
in singular perturbation analysis. We present two domain decomposition methods that
numerically solve the layers of a singular perturbation problem of the following type
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We show that the combination of asymptotic and numerical analysis provides improved
accuracy and/or improved eficiency for such multiple scale problems.
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Many physical problems have multiple scales. A typical situation occurs when physics on
the fastest scale induces narrow regions where the variation in the solution is large. Such
regions are called boundary layers (BL) or transition layers (TL) depending on whether
they are near a boundary or inside the interior of the domain. These problems are generally
relevant for singular perturbation analysis. It seems a natural idea to implement some
of the results of this analysis in the numerical computation. The interest in this field of
research has been increasing in the last few years (see [1] [5] [6] and their references).

In this paper, we first present an asymptotic induced numerical method based on a hy-
perbolic scheme. The idea is that the matched asymptotic technique [7] is typically a
domain decomposition method. In such asymptotic analysis, one splits the domain into
subdomains where different processes occur; one looks for the correct scaling in each sub-
domain and derives the appropriate subproblems; then one uses the matching relations to
connect the subproblems, and so on. The asymptotic induced numerical method that we
present is a numerical algorithm that is in some sense the image of the matched asymptotic
analysis. Also, the matched asymptotic relations, that are difficult to check analytically,
are validated through the computation of the residual. This method has been applied to
a singular perturbation problem driven by conservation laws, for example the isentropic
gasdynamics equations with a physical viscosity, in [4], [11]; in this paper we extend the
method to a model of reacting flows.

Secondly, we present an adaptive domain decomposition method in the context of pseu-
dospectral methods with Chebyshev polynomials. The idea is to use what one knows from
the analysis as part of the criteria for the adaptivity. Stiff fronts are a major difficulty
in the use of spectral methods. Very efficient adaptive methods have been developed in
[3] that solve stiff problems. This method has been extended in [2] to adaptive domain
decomposition. We show how one can enhance this adaptive method for singular pertur-
bation problems: the position of the interfaces, the choice of the mapping, the strategy
of the domain decomposition can be effectively related to the asymptotic analysis.

We will consider here as a test problem the simplified model of reacting flow of Majda.
It has been shown in [13] that this model contains some of the numerical difficulties for
reacting flows. This model plays the role of the Burgers’ equation for the Navier Stokes
equations. In particular, in the computation of reacting shock waves, in this simplified
model one can see that the viscosity balances the source terms in the layer and influences
the speed of propagation. So one cannot expect to compute such phenomena with a
classical hyperholic scheme. In addition, as shown in {13], a splitting method applied to
the operator required an order of magnitude more discretization points than to compute,
for example, a Buckley & Leverett equation in the one dimension case. We demonstrate

;:he efficiency of our domain decomposition method for the difficult case of reacting shock
ayer.

In the interest of brevity, we relegate the details of the asymptotic analysis and more
numerical results to the companion paper [10]

2 Asymptotic-induced numerical methods based on a hy-
perbolic scheme

I:et us first briefly recall the ideas of an asymptotic-induced numerical method for a
singular perturbation problem driven by a conservation law [9]. Consider, for example,
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Table 1: Asymptotic Order of Residual

Type of Zone Order of Residual Local Coordinates
u + f(u)s £ | T
Regular zone O(e) z t
Shock layer O(e1) (z—S@))/e t
Weak singularity O(e/?) (z — S(t))/? t
Shock interaction o(e™) (z — So — Sit)/e {t—15)/¢
with other singularities
Discontinuity with o(1) (z — So — 51t)/€/? (t-1t,)
f locally linear
Formation of shock O(e~'7%) (z — So— Sit)/e2 | (t—1t,)/&1

the equation

ou 8 7] il
WJF%F(U)*%;(P(U)%)- @)
The solution of the inviscid problem
oU 2
5 t 2.7 =0, (2)

can exhibit some singularities such as shocks, weak discontinuities that propagate along
the characteristics, and interaction of singularities. For each singularity corresponds a
thin layer, where the viscous perturbation cannot be neglected. One can identify, using a
matched asymptotic technique, the order of magnitude of the residual and the scaling of
the layer for each type of singularities in the scalar case (cf. Table 1).

In particular, this result holds for a shock layer in the case of a system of conservation
laws. When we use a hyperbolic scheme, for example a Godunov scheme, to compute a
conservation law with or without viscosity, one can use this information to identify the
zone of a shock, based on the computation of the residual. This may require the use of
two grids; however, we can identify three categories of points depending on whether it is a
regular zone, a shock, or something else. Layers that correspond to weak singularities can
be solved using a regular correction technique as in [11] with eventually some adaptivity.
Interaction of singularities need a stretching in time and space in the subdomain according
to Table 1. We will emphasize here the numerical treatment of the shock layer. based on
the asymptotic technique of matching [7]. We refer to [4] and [9] for more details about
the method and some numerical experiments.

Now we are going to describe the method extended. to the following simplified model of
reacting flow of Majda

a _ %u 3

+ ‘a':;[f(u) —qZ}= 5'5:;57 ( )

o Zp = e 1g(u)Z, (4)

du
at

where ¢(u) = 1 if u > 0, and ¢(u) = 0 elsewhere. We refer to [13] for the derivation of
this model and its precise statement.
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This model belongs to the following class of diffusion-convection-reaction problems
/] du, du 8
- 5;9;(1’(“)5? + 57 + 5. () + D(u,e) = 0, (5)

when D(u,¢€) is of order 1 except possibly in some transition layer. if D(u,¢) is uniformly
bounded, D(u,e) occurs as a regular perturbation in a shock layer (i.e., the source terms
appear only as a correction in the second order term of the inner expansion). Therefore,
the asymptotic analysis of a shock layer extended to (5) has only some minor modifications.

‘We will emphasizes the case when D(u,¢) balances the viscosity in a transition layer, that
is D(u,€) ~ e71D;(2) with D1(4) = O,(1) . We will refer to this case as a reacting shock
layer.

The first order term in this layer satisfies the ODE problem
-~ ro ~ A A~
~% (P(0)F) + & (F(O%) - 5'®)0°) + Da(To) =,
. 6
U% — Ulo as £ — —o0, (6)
0o — U? as £ — 400,

Thus, the R & H relation becomes the following jump condition;

[0 - s'w0a] + [ Da(@1a0 = o

In particular, a hyperbolic scheme applied to (5) will not in general give the right speed
of propagation for a reacting shock layer, since the numerical viscosity of the scheme will
interact with the source term.

The asymptotic analysis of a reacting shock layer for the Majda problem shows that the
first order term in the layer satisfies

( (?O,f = H(?O’?O) - H(Ul/ra Zl/r)1
Zog = $(Ug)Zo,

{ 4w = 16(0,) =0, ()
UD"’”UI/r as { — Foo,

20—->0 as £ - —o0,

{ Zo—1 as £ — +oo,

where H(u,z) = 1/24% — §'()u — go 2.

The ability to construct the layer supposes the jump condition:

1/2U0¢ - S"()U; = 1/2U2 ~ S'(&)U, — go,

and that there exists a trajectory of (7) from (Uj,0) to (U, 1). An extensive study of (7)
is given in [13].

One obtains the shift in U, using the conservation relation
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35 . ves = 0 = [FOVIE, +0(e) O

Now, we present the numerical metliod based on these results. We start from the following
elementary finite difference scheme

1
Ui -ur o Un, 2U +U" _ FUp,)-F(U; _1) Zr.,-20 .,
At 2Rz 23z

Zgz-l-l _Zn+1

L = K GUR) 2.

This explicit scheme can be improved by using a Riemann solver to compute the flux.
However, for our purpose, we do not need a more sophisticated scheme as long as it is a
conservative scheme. We are interested in a reacting shock layer; so, our numerical test
identifies the zone of strong singularities where both the viscosity and the reaction terms
are of order 1.

As in [4], we obtain Uj, U, and some approximation of the position of the interface. Let
us notice that in our numerical experiment, we solve a Riemann problem and U, U, are
independent of time. Therefore, Up is the only nonzero term of the reacting shock layer.

A solution (Uy, Zo) of (5) is then computed with any ODE scheme. One can use some
asymptotics in the neighborhood of critical points (U, Zj;,) to derive explicit formulae
to decrease the cost of the computation of (U, Zo).

Then, one substitutes to (U, Z") in the reacting shock layer, the only traveling wave
(U0, Zy) that satisfies the conserva.tlon relation (8).

We have implemented this domain decomposition method for the spiked strong detonation
case with U; = 1.0, U, = —1.5, and go = 2.375. We use 40 points in the regular grid
to solve the problem with e = 0.05 (Fig. 1). Numerically, the thickness of the layer is
about 12¢. One can see the ¢ jump at the interface between the inner domain and the
outer domains. We obtain some analogous results with 400 points in the regular grid
and € = 0.005 (Fig. 2). Because U; and U, are so easy to obtain numerically, there is
no significant error in the speed of propagation of the layer. We intend to solve more
difficult cases in the future that requires the solution of the next order term in the inner
expansion.

The problem of the initial formation of this reacting shock layer will be solved with the
domain decomposition method presented in the next section.

We can also apply the minimum viscosity method of [4] to this problem in a straight-
forward way. We keep only one artificial point in the layer to allow the scheme to be
conservative. The figures 3 and 4 shows the result with 40 and 400 points, respectively.
In each case, the composite scheme tracks the interface with an error less than the mesh

size.
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Majda wodel ; epsilon = 0.05
T = 0.625
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Majda Model ; reduced problem
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3 Adaptive domain decomposition with pseudospectral

When solving a regular problem with domain decomposition and a fixed total amount
of collocation points, the accuracy decreases as the number of domains increases. This
is characteristic of the pseudospectral accuracy. However, for stiff problems, numerical
experiments demonstrate that one can drastically improve the numerical accuracy of the
pseudospectral approximation by adapting domain decomposition. This adaptivity is
based on the a priori estimates of [3].

By using the information given in the asymptotic analysis to localize the layers and obtain
the magnitude of the mapping parameters for each type of layer, one reduces the cost of
adaptivity. In singular perturbation theory {7}, one introduces subdomains and stretching
variables to solve these layers, and one obtains a uniform approximation of the solution.
We will use some analogous tools in the numerical method that follows.

We introduce two one-parameter families of mappings [3],

[_11 1] B [_11 1],
s ¥ = fi(s,a), (9)

with fi{(s,a) = & [ﬁat;m(a tan(5(+S - 1)) + 1], and fa(s, ) = atan(s atan(a™!). a
is a small free parameter that describes how one concentrates the collation points in the
physical space.

We call f1 a mapping of BL type and f; a mapping of TL type. We use in f; a + sign
(respectively, a — sign) for a BL on the right (respectively, on the left) of the interval. A

number of other mappings are possible choices but we restrict ourselves to the previous
examples.

In singular perturbation, one uses stretching variables of the form ¢ = 2k where zi
is the location of the layer, and ¢ is a measure of the stretching. It is easy to see that
the parameter a in the nonlinear mappings f; and f, plays a role analogous to ¢ in the
numerical method. One needs also to focus the stretching on a subdomain lzk— Lk, Tr+ L]

of 1. So we introduce a second one-parameter family of affine mappings. To solve a TL
we use

['—13 11 i [‘ck - Lks T+ Lk]a
Y z = gx(y, L), (10)

and to solve a BL on the right, for example, we use

[-1,1] — [op — L, 4]
v @ = gi(y, Lr). (11)

Difficult problems include the computation of the free parameter a characteristic of the
stretching, and also the localization of the layer (i.e to compute zj or Ly). We have two
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tools at our disposal. The first tool is the asymptotic analysis of the PDE involving a
critical parameter. This tool is strongly related to the PDE, so we emphasize this aspect
when we study specific examples. The second tool is relevant for the approximation
theory, and requires a purely automatic treatment (see [2] [3]). We present in [10] these
tools in the context of an arbitrary number of subdomains to solve singular perturbation
problems.

It is quite clear that the Chebyshev Method solves a BL more easily than a TL because
of the O(N?) concentration of the collocation points at both ends of the interval [-1,1].
When the Chebyshev Method is supplemented with a mapping of BL-type, one improves
the (already good) numerical accuracy of the approximation when the problem has bound-
ary layers. However, it is unclear what the best mapping and subdomain technique is for
a TL.

As a matter of fact, let us suppose that u exhibits a single TL at zg € (2. One can use
either

¢ two subdomains with their mapping of BL type and their interface in g, or

o three subdomains with an inner domain centered at z¢ and its mapping of TL type.

We have tested these two strategies to adapt and split the domain on the Majda simplified
model of reacting flow.

We have applied the domain decomposition technique [12] with pseudospeciral on the
initial boundary value problem (5) on the domain [a,b] with the initial condition

u(z,0) = (U; — Ur)}_j_;ﬂlg_) +U,, rmfor = _Z’_,

and the boundary conditions

U(a) = Ui, U(d) = U,.

We report here some numerical experiments of the spiked strong detonation case of Section
2withU; =1, U, = —1.5, ¢ = 2.375 ax;d a=-6,b=8. Our numerica.l s.cheme explicitly
solves the nonlinear convection term (%-)z, therefore the time step is limited by the CFL
condition. Also we impose the piecewise Chebyshev approximation of u(z,.) to be C?
at the interface. We found it to be more accurate, robust and easy to adopt the two
subdomain strategy to solve for the reactive shock layer. Numerical evidence of this
result (as well as asymptotic analysis) are reported in the companion paper [10]. Also
it is very convenient and efficient to move the interface by tracking the maximun of the
Arrhenius term g,e~1®(u)Z. The numerical method solves the initial formation of the
reactive shock layer and then the solution converges to the traveling wave (6) as ¢ grows.

We have obtained a numerical error of ordre one per cent on the maximum value of % and
on the speed of propagation of the traveling wave for € = 0.1 (respectively, € = 0.01) with
20 (respectively, 42) collocation points per subdomain (see Fig. 5 and 6). One observes
that the method is conceptually very well adapted to solve the initial formation of the
layers as well as the interaction of singularities. However, because of the CFL comstraint,
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and because the minimum distance between two discretization points has to be of order
less than ¢ in the layer, this method is computationally expensive to solve for a traveling
wave.

A further step in our research is to implement a domain decomposition method that is a
mixture of both methods presented in this paper. Strong singularities, such as a simple
shock or a reactive shock that are easily identified, can be solved by the first domain
decomposition technique presented in this paper. Interaction of singularities or initial
layers may be solved by the adaptive domain decomposition based on pseudospectral
technigues. In addition, at each stage of the computation, one may use asymptotics to
select the best method.

Let us mentjon that to extend the method to solve problems in two space dimensions, one
has to use domain decomposition to solve layers as well as the difficult problem of geometry
due to the curvature of the fronts. Also we may expect both domain decomposition
methods to be useful tools for parallel computing of singularly perturbed problems in two
space dimensions.

2 domains ; 32 collocation points per domain
epsilon = 0.05
T=0.5

1.4 T
]
i N\
8.4 |
-2, 5 .|
-1.5 \
T T T T I T T T T [ 1 1
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FIG 5
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2 domains ; 32 collocation points per domain
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