CHAPTER 9

Finite Element Matching Methods*

J.-M. Thomas™**

Abstract

We present here nonstandard finite element methods for solving an elliptic
problem. The methods are nonstandard in the sense that they can use different finite
element approximations in subdomains; the matching conditions on the interfaces
are obtained with two Lagrange multipliers and a mortar element. A nonoverlapping
Schwarz alternating method is then described.

1. Introduction.
Let © be a bounded open set in RN (N < 3). We consider a domain decom-
position of Q into an arbitrary number F of subdomains:

(1) e=%,

where the Q. are disjoint connected open sets in RN with piecewise smooth bound-
ary 0. So the domain decomposition is without overlapping. Let I be the set of

the internal boundaries:

E
) r=|JT.,
e=1
with
(3) T, =00\ (02.N8Q), foralle, 1 <e< E.
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For 1 € e #£ d < E, we shall introduce the notation:

(4) Ped = aQe n aﬂd =Tge
and n.q shall be unit outward normal to 0Q, on T'eq : N.q = — nge. Then Ou/On.q
is the Q.-outward normal derivative:

Ou

p =grad u-n. = —grad u-ng, = — B, on 'y =y,

if u is sufficiently smooth in . U Q4.
The presentation of the methods is made on the model problem:

(5) —Au=f in Q,
u=0 on 0%,

where f is given in L2({2); so the unique solution of (5) belongs to the Sobolev space
H}(Q).

Some approximation methods of the solution u of (5) will be given with finite
element approximations which are made independently on the interior of each sub-
domain Q.. The matching is obtain with the use of two Lagrange multipliers on each
interface I'.q and of a mortar element. For solving the discrete problem, we shall
study the possibility of developing a nonoverlapping Schwarz alternating method.
So in Section 2, about the continuous model problem we introduce a nonoverlapping
Schwarz alternating method analyzed by P.L. Lions. Then we recall the Glowinski-
Le Tallec’s interpretation of this method as a classical saddle-point algorithm. The
numerical analysis of the similar saddle-point problem in the finite-dimensional case
is done in Section 3. The corresponding saddle-point algorithm is given in Section 4.

2. Nonoverlapping Schwarz alternating method : continuous case.

For the model problem (5), a nonoverlapping Schwarz alternating method is to
solve for m > 1:

(6) —Aul = f in Q.,
r g s
E +pug = — B + puy on ey (e # d),

ul? =0 on 9%, N OQ.

So at each iteration, on each interface ['ey = T'y, we have two Robin-Fourier’s
conditions: one for the solution of the boundary problem

on {2 and one other for the solution of the boundary problem on £24. When
the sequence u™ is convergent in a convenient sense, this gives at the limit the
two classical matching conditions: continuity of u and continuity of the normal
derivative Ju/0n at the interfaces.
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The number p is assumed to be a strictly positive parameter; in a little more
general context, P.L. Lions has proved ([8], Theorem 1, p. 208) that the sequence
u® converges weakly to ujg, in H1(Q.) foralle, 1 <e< E.

By a mathematical programming approach, Glowinski and Le Tallec have given
an interpretation of the above method as a classical saddle-point algorithm, (cf. [7]).
More precisely, they have obtained the same nonoverlapping Schwarz alternating
method in an augmented Lagrangian framework, [5], (6], with the following aug-
mented Lagrangian L:

E I/
(7) L(ve,q; pe) = Z/ (§|grad vel|? — fve) dz

e=19e

e=1

E E
—Z/ue(ve—q)d7+§Zflve—4|2d7-
r.

e=11-~=

The saddle-point solution is u. = restriction of u to ., p = trace of v on T},
Ae = Ou/On, on T'¢; in particular A + Ag = 0 on Leq.

This approach with no a priori imposed matching condition has been found
more convenient for the generalization of this kind of method in finite-dimensional
approximations.

3. Noustandard finite element methods.
Foralle=1,...,F let

(8) Xhe be a finite-dimensional subspace of {ve € H1(Qe); ve = 0 on 32N 8.}
and |

(9) Ape be a finite-dimensional subspace of L2(T.).

In practice the spaces X}, are obtained using a conforming finite element approx-
imation of H1(f.), independently for each subdomain Q.. The spaces Ap. are

obtained using a finite element approximation of L?(I'cq). We denote X and Ay
the product spaces:

E
(10) Xy = H Xhre
e=1
and

E
(11) Aﬁ = H Ahe-

e=1
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Moreover let

(12) Y} be a finite-dimensional subspace of H;%(I‘),

E
where Ho}fo(l") is the subspace of L2(T') constitued by traces on I' = |J I, of the
e=1
functions which belong to H}((Q).
Finally we introduce a subspace W} of X}, x Yj and a subspace My, of A, ; the
choices Wj, = X}, x Y}, and/or My = A}, should not be excluded.
Then we search saddle-points on Wj, x M, for the augmented Lagrangian L.
With the definition (7) for £, it is straightforward to see that (upe,Pn; Ase) is a
saddle-point of £ if and only if ws = (upe,pr) and Ay, = (Ane) are solution of:

(13) wp € Why Ah c Mha
Vzp, € Wi, a(wh,zh) + b(zh, /\h) = /fzh dz,
Q
Vpr € My,  b(whr,pr) =0
with
E
(14) a(wp,z1) = Z/grad Upe - grad vpe dz +
ezlﬂe
E
403 [ (une = p)one — an)dy
e=11-‘e
and
E
(15) b(zn, M) = — Zf)\he(vhe —qn)dy,
(»:=1Pe

for wh = (whe, Pn), 21 = (Vhe,qn), An = (Are). Using the Babuska-Brezzi’s theory
(cf. for example [10]), it is now well known that the problem (13) has a unique
solution if and only if the two following assumptions are satisfied:

16 inf sup a(zn,ws) > 0,
( ) zn €VR\{0} WhEI‘)/h (h h)

where the subspace V}, is defined as the kernel of the bilinear form o(.,.) :

(17 Vo= {zh € Why; Vur € My, b(zh, ur) = 0}
and

18 inf up bz, > 0.

(18) ﬁkéﬁh\{ﬂ} zhsegf;. (#h, 1n)
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Clearly if a(zp,21) = 0 for some 2z = (Vhe,qr) in Wp, then vj, is constant on €.,
Vhe = 0 on 90, N IQ and g, = vpe on e for all ¢, 1 < e < E. Then the bilinear
form a(.,.) is Wy-elliptic and so (16) is always satisfied .

On the other hand (18) is satisfied if and only if

(19) Vur € My, with pp, # 0, 32, = (Vhe, qn) € Wi such that
E
Z/uhe(vhe —gqn)dy #0.
e=1Fe

We give some applications of the above; for the sake of simplicity only the case of
plane geometry (N = 2) will be treated hereafter.

Example 1. We assume that W, = X} x ;.
Then (19) is satisfied as soon as we havefor alle, 1 < e < E,

(20) VYihe € Ape With ppe # 0, Jvpe € Xpe such that /uhevhe dy # 0.
T.

When X}, is a space of continuous, piecewise polynomial functions on Q., vanishing
on ', N 89, (conforming finite element on Qe), the analysis of (20) is what is made
in hybrid finite element method when a Dirichlet condition is dualized with the use
of a boundary Lagrangian multiplier (cf. [2], [3], [10]).

Example 2. For a given integer k, let

(21) Vi = {gqn € C°(T); anlr., € Pe(Tea), 1< e#d<E}.
Let

E
(22) An =[] Ane,  with Ae = [T Pe-2(Tea),

e=1 d#e

(each T4 is assumed to be a straight line; a function ps. € Ap. is not defined at
the vertices of 0S2.).
Take for a subspace M},

(23) M; = {ph €Ap; ife<d, pra=0o0n Fed}.
Take for a subspace W},

(24) Wi = {wh = (Vhe, ) € X X Y; vhe(a) = qr(a) = vra(a)
for each vertex a € Teq; f e < d, v4g =gqn on Fed}.

Let us assume that

(25) Vte P(Tea) N Hg(I‘ed), Fvpe € Xpe such that vpe =t on I'eg for all e < d.
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So (19) is satisfied. We recovered here a variant of the mortar finite element method

(cf. [9], [1])-

4. Nonoverlapping Schwarz alternating method: discrete case.

When the space W}, is the product space X, XY}, as in Example 1., an algorithm
for solving the saddle-point of £ over W} x M}, is:

Given p) and A9,
then for m > 0, p* and AP = (ARX) known; solve successively

le uzﬂ'% € Xp, forallv, € X,
E

Z, /grad up, grad vhedw—}-p/uhe 2opedy } =
e=1 Q. r.

E
=Z /fvhed:v+/(/\ + ooy Yhedy ¢,
e=1

20 }\m+% € My, forall m, € M

Z/ Mot e dy = E / Afwl“»~a+f'(“lz~e _p?)”h“} @,

e—l e—ilI‘e

3o ptleY,, forallga€Ys

/"‘“hd'r Z/(uh+”+ “at gy dy,

T e—l

40 /\m+1 € My, forall ,uh € M,

/Am-Hf-‘he dy = Z / {’\h Zpne + P(uhe Y +1)I‘he} dy.

e—'ll—.e e—ll-.e

The step 1° may be computed in parallel . In fact, we are solving in this step the
finite element approximation of F independent Fourier-Robin’s problems. Moreover
when M}, = A;, the steps 2° and 4° are also parallelizable. But the step 3° may
not be reduced to parallel computations on the I'.. It is the synchronization step
in the algorithm.

Remark. We cannot develop such algorithm when the space W}, is a proper
subspace of X, X Y3 as in Example 2. In the situation of this Example 2., it
is convenient to eliminate directly the Lagrange multipliers and then to solve the
elliptic problem in V}, by a preconditioned conjugate gradient method. It can be
computed parallelly with the method of Bramble et al., [4].
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