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Abstract. The vertex space algorithm of Smith [18] is a domain decomposition method for
two dimensional elliptic problems based on non-overlapping subregions, in which the reduced Schur
complement system on the interface is solved using a generalized block Jacobi type preconditioner,
with the blocks corresponding to the vertex space, edges and a coarse grid. In this paper, we describe
several variants of this algorithm derived from using two kinds of approximations for the edge and
vertex space sub-blocks, one based on Fourier approximation, and another based on an algebraic
probing technique in which sparse approximations to these sub-blocks are computed. Our motivation
is to improve efficiency of the algorithm without sacrificing the optimal convergence rate. Numerical
and theoretical results on the performance of these algorithms are presented.
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1. Introduction. In this paper, we describe efficient versions of two domain de-
composition algorithms based on non-overlapping subregions for solving self adjoint
elliptic problems in two dimensions. This paper is a shortened version of [8], where
additional numerical results and proofs of some of the results stated here are presented.
The algorithms we describe are variants of the vertex space algorithm (VS) proposed
by Smith [18] and Nepomnyaschikh [17], and an algorithm of Bramble, Pasciak and
Schatz (BPS) [2], both of which can be viewed as block Jacobi type preconditioners
for solving the reduced Schur complement, system on the interface.

In the original version of the VS preconditioner [18], the sub-blocks of the Schur
complement, which are dense matrices, are computed and inverted using direct meth-
ods. In order to reduce this overhead cost, we consider using approximations which are
inexpensive to construct, and inexpensive to invert. Two kinds of approximations are
considered, one based on Fourier approximations of the interface operators, and an-
other based on sparse algebraic approximation of the interface operators by a probing
technique. The Fourier based approximations yield spectrally equivalent precondition-
ers with respect to mesh size variations. However, their performance can be sensitive
to the coefficients. On the other hand, the probing based algorithms adapt well to the
coefficients, but can be sensitive to mesh size variations.
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In § 2, we describe the elliptic problem and the Schur complement system on the
interface. In § 3, we describe the original versions of the BPS and VS preconditioners
for the Schur complement on the interface. In § 4, we describe the Fourier and probing
variants of the BPS and VS preconditioners. Finally, in § 5, we present numerical
results comparing the rates of convergence of the various preconditioners.

2. Non-overlapping domain decomposition approach. We consider the fol-
lowing 2nd order self adjoint elliptic problem on a polygonal domain Q € R?:
(1) -V - (a{z,y)Vu) f nQ
0 ondQ,

Il

k'3

i

where a(z,y) € R**? is a symmetric, uniformly positive definite matrix function having
L*®(Q) entries, and f € L*(Q).

We assume that the domain £2 is partitioned into N non-overlapping subdomains
Q,---,Qy of diameter H, which form the elements of a guasi-uniform coarse grid
triangulation 79, see Fig. 1. We also assume that the subdomains ; are refined
to produce a fine grid quasi-uniform triangunlation 7* having elements of diameter
h. Corresponding to the coarse grid and fine grid triangulations, we discretize (1)
either by using finite elements, see [10], or by using finite difference methods, see [19],
resulting in a symmetric positive definite linear system Azu; = f;, on the fine grid
and Aguy = fy, on the coarse grid.

Let I denote the union of the interiors of the subdomains, and let B denote the
interface separating the subdomains, i.e. I = U;;, B = (U;0;) — 0Q. Then,
grouping the unknowns in I in the vector uy and the unknowns on B in the vector up,
we obtain a reordering of the fine grid problem:

(2) A Ags Yr § Ir .

ATy Aps Up I
Here A;; corresponds to the coupling between nodes in the interior of the subdomains.
For standard discretizations Ar; = blockdiag(A;,,-- -, Any) is a block diagonal matrix.

Fliminating the interior unknowns w;, we obtain u; = A7} (fr — Arpug), and
substituting this in the 2nd block row of (2) yields an equation for ug:

(3) Sup = fz — ATBALL fr,

where § = App — AlgAj} Arp is referred to as the Schur complement or interface
matrix.

We consider solving (3) by a preconditioned iterative method such as the conjugate
gradient method, see [14], without the explicit construction of §. In this case only
matrix vector products with .S are required, and each such matrix vector product
requires the solution of one problem on each subdomain Q;. The Schur complement,
however, is ill-conditioned with x(5) = O(h™"), see [1, 2], and therefore requires a
preconditioner M; the construction of efficient preconditioners M for 5 will be the
main focus of this paper.

3. The BPS and VS preconditioners for §. The Bramble, Pasciak and Schatz
preconditioner (BPS) [2], and the vertex space preconditioner (VS) of Smith [18] and
Nepomnyaschikh [17] can both be interpreted as generalized block Jacobi type precon-
ditioners for (3) with overlapping blocks and involving residual correction on a coarse
grid. Variants of these preconditioners will be discussed in § 4.
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F1a. 1. The vertezr space partitioning of the interface.
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3.1. Notations for a partition of the interface B. In the case of many sub-
domains, the interface B can be partitioned as a union of edges E;; and cross-points V,
see Fig. 1: B = U;E;; UV, where E;; denotes the edge separating subdomains €2; and
Q;, and V denotes the collection of cross-points (vertices (zf ,3f') of the subdomains).
Note that the edges E;; are assumed not to include its endpoints.

For each edge Ej; we define R, as the standard pointwise restriction of nodal
values to E;;, see [8]. Its transpose RE, . extends grid functions in E;; by zero to the
rest of B. Similarly, we define By as the standard pointwise restriction map onto the
cross-points, and its transpose R is thus extension by zero to B of nodal values in V.

3.2. The BPS preconditioner. The BPS preconditioner can be viewed as a
modification of the standard block Jacobi preconditioner M, consisting of diagonal
blocks of the Schur complement S in the block partitioning of the interface B into the
cross-points V and n edges E;;, in some ordering E,,-- -, E, of the edges:

SE; R SElE, SElV
S — T: ... e .
SElE,l Tt SE,. SE,;V
T T
Sgv r Sewv Sy

Here, Sg.p; = Rg,S R, denotes the coupling in S between nodes on E; and E;, and
Sev = Rg SRY denotes the coupling in § between nodes on E; and V. Note that
edges E; and E; will be coupled in S ounly if they are part of the boundary of a common
subdomain Q. § is thus a block sparse matrix, and corresponding to each edge E;;,
the submatrix § 5., 18 identical to the two subdomain Schur complement on interface
E;; separating €; and Q;. The submatrix Sy, which corresponds to coupling in 5
between cross-points, is almost a diagonal matrix since the cross points are weakly
coupled in S. In the case of five point discretizations on rectangular subdomains, Sy
is diagonal.

Corresponding to this block partition of .5, the block Jacobi preconditioner M} is
defined by:

(4) M;'gs = Y RE,SpiRe;fs+ RSy Ry fs.
edges 4j

This block Jacobi preconditioned system can be shown to have an O(H~?) condition
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number, see [2, 20]. This can be attributed to the absence of global communication of
information amongst all the edges in the preconditioning step.

The original version of the BPS algorithm [2] involves two changes to this block
Jacobi preconditioner. One is that the submatrices Sg,; are replaced by Fourier based
approximations § B;; which will be described in § 4. The second change is to incorporate
global coupling by replacing the cross-points correction term R% Sy * Ry by the standard
coarse grid correction term Ry AR'Ry as in two level multigrid methods, (involving
weighted restriction and interpolation maps Ry and RY respectively,) see [8]. The
BPS preconditioner is defined by:

M§}135fB = Z RE;jS’E,-];RE,-jfB + RﬂA;IlRHfB7
edges i,

and the resulting condition number is improved over that of the block Jacobi version.
THEOREM 3.1. The BPS preconditioner satisfies

Amaz(M5psS)
Amin(MppsS)

where ¢, is independent of H and h.
Proof. See [2] and [20]. O

< ¢y(1 +1og?(H/N)),

3.3. The vertex space algorithm of Smith and Nepomnyaschikh. Thelog-
arithmic growth in the condition number of the BPS preconditioner can be attributed
to the neglect of coupling between adjacent edges of B. The VS preconditioner of
Smith {18] and Nepomnyaschikh [17] incorporates some coupling between adjacent
edges through the use of certain overlapping blocks of S corresponding to nodes on
certain vertex regions V,, which will be defined, and it leads to a condition number
independent of mesh parameters.

Let V; denote the portion of B within a distance of SH from (z¥,yf) for some
positive fraction 0 < § < 1, see Fig. 1. We refer to each V;, as a vertex region or vertex
space. Corresponding to each vertex region, we denote the pointwise restriction map
onto V; by Ry,, where, for any grid function gg on B, we have Ry, g5 = gp on V;. Its
transpose Ry, is thus extension by zero outside V. The submatrix Sy, corresponding
to V; is defined by Sy, = Ry, SRY,. The action of the inverse of the vertex space
preconditioner M, . involves the inversion of these new overlapping blocks in addition
to the blocks used in the BPS preconditioner:

(5) A’I;lfB = R§‘4I—;1RHfB =+ Z Rgij(sgﬁ)_IRE;jfB -+ Z ng(s"k)_lRkaB‘

5
EBij Vi

The following result is proved in [18, 17].
THEOREM 3.2. Suppose the overlap of the vertez regions Vi is BH, then:
Amazc(MysS)

< C(B),
’\msn(]"li;g"s’) - ( )

where C(B) is independent of H and h.
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4. Two variants of the vertex space method. The implementation of the
VS algorithm requires the computation of the edge and vertex matrices Sg,; and Sy,.
If there are n; nodes on each 9€; N B, then computing all the submatrices Sg;; and
Sy, would require solving n; problems on each ;. This expense can be significantly
reduced if the exact edge and vertex matrices are replaced by approximations which can
be computed and inverted at significantly less cost. Thus the modified VS algorithms
that we will derive have the form:

(6) Myvys = RgA;IIRH + E‘Rgij(S(Eij)—lREij + Z Rﬁ (SYVk)——lRVk:
3 k

ij

where 5'3'.1. and 5‘Vk are approximations to Sg,; and Sy, respectively, and the corre-
sponding modified BPS algorithm is:

(7) MiﬁBPS = R’IF}AI_{IRH + Z R%ij(S'Eij)_lRE.‘j‘
ij

4.1. Fourier approximations. Fourier based approximations of the edge and
vertex matrices are constructed based on the property that, restricted to simple curves
the Schur complement is spectrally equivalent to the square root of the Laplace operator
on it, and this has been studied extensively, see [1, 13, 4, 3, 12, 5].

For the edge approximation, we use:

(8) SE., = D}*W diag(u)W D32,

where D;; denotes the diagonal of Ay, restricted to Eyj, gy = 1/ A(1 — 28) with A =

4sin®(¥2h) and W;; = v/2hsin(ijrh). We note that this is a diagonally scaled form of
the approximation first used by [2]. The scaling is added to increase adaptivity to the
variation in the coefficient a{z,y) in (1).

Next, we describe approximations of the vertex space matrices Sy, based on Fourier
techniques for the model geometry of Fig. 3. Let uy, be a grid function on B which
is zero outside the vertex region Vi, i.e., zero on B — V;. Then, by a property of the
Schur complement [8], we obtain that

4
{9) up, Sy, uy, = Z uy, § (i)uvk .

i=1

where $® is the component of the Schur complement originating from ;. For i =
1,2,3,4, let L¥ denote the L-shaped segment V, N 99;, and further let Ryx denote the
pointwise restriction onto L}. Then, as in the case for the edges, (Rprup )TS' G Rirug),
is spectrally equivalent to (Rrrug)” MF(R r+up) where M} is any of the known unscaled
Fourier approximations to the square root of the Laplacian on L} (see e.g. [9, 8].) Let
D} denote the diagonal of A®) resiricted to LE. We define:

4
(10) 5%, =) RL(DE)Y'2ME(DEY/2 Ry,

=1

Note that each term in the above sum is a small dense matrix which can be computed
inexpensively. By construction, the matrices 5§, are spectrally equivalent to Sy, , from
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which we can easily prove the following result for the combined Fourier preconditioner
Mpvs using both S, and SY, [8]:
THEOREM 4.1. The Fourier preconditioner Mpy g satisfies:

)‘ma:c ( ﬂl;\}s S)

L = KVl
= ’\min(M;\}sS)

S C1s

where ¢y, ¢; are independent of H, h, but may depend on the overlap ratio 3. For most
applications we considered, it was sufficient to choose the number of nodes on the
vertex regions V; to be small, say 5 or 9, and so the matrices S{, can be computed
and inverted at little expense by direct methods.

4.2. Probe approximations.

4.2.1. Edge probe approximations. In its basic form, the probing technique
[9, 15, 16, 11] consists of approximating each Sg,; by a tridiagonal matrix S &,; Which
is chosen on the assumption that each node on an edge is strongly coupled in S only
to nodes adjacent to it and weakly coupled to the other nodes.

To obtain a tridiagonal approximation S’E..]. to Sg,;, we equate the matrix vector
products Sg,;p; to .g’E‘.J. p; fTor the following three probe vectors p;:

P = [170:0,170707"']117 P2 = [07170,0717())" ']Ta P = [07071a010717' "]T:
resulting in:

Gen Godo 0
(SE,» . )21 (SE,-_,;)22 (Ssg . )23
(11) (gz.;] )34 (gs..)sz (gE.J.)sa = [SEiipl’SE-‘jp27SE.—jP3]v

from which the non-zero entries of 5’E‘j can be easily read off. In general, S, , will
not preserve the symmetry of Sg,;, and so we symmetrize it to obtain Sﬁ.j using the
following minimum-modulus procedure {7]:

oy _f Gei i 1(5m)sl < 1(5mul
(%%F&%ﬁiw&%mwmm

We will denote the constraction of 5'1};;,- from Sg,,p:,5E,; P2, SE,;Ps by the notation:

(12) ‘§.}E)ij = PROBE(SEijpla SE;jPQ, SEijp3)‘
It can be shown [7] that 5 F.; preserves row-wise diagonal dominance of SE-

Computing the three matrix vector products Sg, p; Tequires three soh:es on each
subdomain ; and ;. Thus, in order to compute edge approximations SE, ,; on the
edges of all the subdomains, twelve solves on each subdomain would be required, since
the boundary of rectangular subdomains consists of four edges.

We now describe a procedure for computing all the edge approximations using
only six solves on each subdomain, by simultapeocusly prescribing boundary conditions
on other edges, an idea first used in Keyes and Gropp [15, 16]. To minimize the
approximation errors arising from the coupling between vertical and horizontal edges,
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F1G. 2. Simultaneous probe vectors

P>t =1,2,3. p3+,-,i: 1,2,3.

0 4 0 D; 12 F)i
P Pi Pi Pi 0 0 0 0

0 0 0 0; P; P;
i Di b3 y 43 0 0 0 0

0 0 0 D; p; D;
4 Di Pi Di 0 0 0 q

0 o 0 p; D; p;

we will specify probe vectors p; either on all horizontal edges simultaneously, or on all
vertical edges simultaneously. For ¢ = 1,2, 3, see Fig. 2, define:

_ J pion all horizontal edges _ J 0 on all horizontal edges
Pi=1Y 0  on all vertical edges , Pati = p; on all vertical edges.

On the horizontal edges, the probe vectors p; can be ordered from left to right, and
on vertical edges from bottom to top. For these six probe vectors, we compute the
discrete harmonic extensions E*p; = (— A7/ A;pp;, P;), and this involves six solves on
each subdomain. If E;; is an horizontal edge, we define:

ng‘j = PR’OBE(REijAhEhpU REijAhEhp27REijAhEhp3)'
If E;; is a vertical edge, then we define:

SE,; = PROBE(Rg A, E"p,, Ry, A, E"py, Ri,, AL E"py).

TuEOREM 4.2. If the cocefficient mairiz Ay, for the model rectangular geometry of
Fig. 1 satisfies the discrele strong mazimum principle (as is the case for standard five
point discretizations), then the probe approzimations 5'5‘.1. obtained above are sirictly
diagonally dominant.

Proof. See [8] for details. 0

4.2.2. Probe vertex approximations. Next, we describe how to adapt the
probing technique to comstruct sparse approximations to the vertex submatrices Sy,.
We use a slight modification of a technique first described in [6], which allows us to
prove that the approximation is non-singular and preserves diagonal dominance.

For simplicity, we will describe this procedure for the vertex region V}, in the center
of the subdomains ;,---,{, of Fig. 3. We partition V; into five disjoint regions:

(13) Vi=(WNENNVeinE)N (Vi N E)n(Vi n E)n (=8, o),
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F1G. 3. Numbering of Edges.
Es E;

(mf)y{:{) = B

E12 Q4 E3 93 E13

E; Ey

and we obtain a corresponding 5 x 5 block partition of the vertex matrix Sy, :

Suu 0 Sz S Sis
0 Sa Sag Sos Sus
Svk-*-‘ 5;15 Sga Sss 0 5'35 ’
SL ST, 0 Say S
ST S S% S Sss

where each §;; corresponds to the coupling between nodes in block ¢ and block j. The
submatrices .51, and S34 and their transposes are zero, since there is no coupling in §
between nodes in £, and F,, and between nodes in Fy and E,;. We will construct a
vertex matrix approximation 5’% having the same block structure as Sy,, with sub-
blocks 5',-]- which will be chosen to be sparse.

To facilitate description of the sparsity pattern, we will use the following ordering
of nodes within ¥;; for each of the four edge segments E; 1 V., the nodes will be
numbered to increase away from the cross-point (z¥, yf), which is ordered last. This
ordering is shown in Fig. 4 when each segment E; NV, contain just two nodes.

Qur choice of the sparsity pattern for the sub-blocks 5}; is based on the assumption
that the elements of Sy, decay with increasing distance between nodes.

Definition and computation of the edge blocks §j; for i = 1,2,3,4. Within
each edge segment E; NV, we assume the coupling in Sy, is strong only between
adjacent nodes. Based on this assumption, 5y will be approximated by tridiagonal
matrices S;; which are chosen to be the submatrices of the tridiagonal edge matrices
SE fori=1,2,3,4, which were computed in § 4.2.

Definition and computation of the blocks 5’,-5 fori=1,---,5. We assume the
cross-point (zf,y) is coupled strongly in Sy, only to the nodes adjacent it. Based
on this assumption, we choose the vectors Sis to be zero except in the first entry,
ie, S = ((Si)1,0,--+,0)T, fori = 1,---,5. For five point discretizations on the
rectangular geometry of Fig. 1, it can easily be shown that the last row and column of
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FIG. 4. Ordering of unknowns within each vertez subregion Vi

Block partitioning of nodes Numbering of nodes
® E,
‘ 8
7
Q___71l 21134 g
AU 2NN @
5
3 6
® Es
1A V, with N,, = 2

Sy, is exactly equal to the last row and column of Ry, A, RY , the matrix Aj restricted
to Vi.. Therefore, we define

Sps=Ais =85, 1=1,---,5, and 5'5,-EA5{:55‘., i=1,---,5.

Definition and computation of .§',-j for i = 1,2 and j = 3,4. We assume the
couplings in Sy, between edge segments E; N V; and E; N V; is strong only between
the nodes which are closest (adjacent) to the cross-point (zf,yf). Based on this
assumption, we choose the submatrices 53, S14, Sps and §,4 and their transposes to
have all zero entries except for the {1,1)-th entry. So there are only eight non-zero
entries to define.

Consider for example the entry (5)4)1;, which we would like to be an approximation
t0 (S14)11, the coupling in § between node (zff — A, y¥) and node (=, yfl + k). Note
that (1)1 = (S6)(=F — h,yf) (ie. the component of Sé; corresponding to the
point (zf —h, 3f) ) where 6, is the boundary data which is 1 on (zZ,yf +h) and zero
elsewhere, and therefore computing (54)1; requires one subdomain solve. In order to
reduce this overhead, we would like to extract an approximation from the subdomain
solves we already used for the probe edge approximations. For example, one could
define (Sy4)11 = (Spa)(zf — h,yf’). However, it turns out that this definition can lead
to a non-diagonally dominant (and possibly singular) Sy, . This can be seen by noting
that

(SP4)($§I -~ h, f"ﬁ?) ={(Se, 5,0 + S5, pol1 + Sg,m.p1 + 53,&;?1)(%’{{ - hy ﬂf)

The last two terms on the right corresponds to extra influence from 2, on the coupling
between nodes (zff — h,yf) and (z¥,y¥ + k) (which should only involve couplings
within ;). These extra couplings could cause loss of diagonal dominance, since, in
case the coefficients are large in Q,, the last two terms will dominate the sum on the
right. In order to eliminate the influence from Q,, we now define

(§14)11 = (5&&;191 + SE,Empx)(iﬂf ~h, yf’ ) (E (RﬁlA(i)EhP4)1) 3
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F1G. 5. Discontinuos coefficients a(z, y)

e=300 |a=10"*]a=31400| a=5

e = 0.05 a=6 a =007 |a=2700

a = 10° a=01 | a=200 a=19

a=1 a = 6000 a=4 la= 140000

where we recall that A() is the local stiffness matrix on Q,. The last equality comes
from the definition of the local Schur complement, and can be extracted from the
subdomain solves used to consiruct the edge approximations.

Analogously, we define the seven remaining non-zero entries by:

(‘5:'13)11 = (Rg AYEp,), (524)11 = (Rp,A®E"p,)

(14) (€23)11 = (Rg,A®Ep,), (1§31)11 = (Rp,A®E"p,)
(€32)11 = (Rg,A®E"p));, (Su)u = (RE4A(1)EhP1)1
(Si2)u = (Rp, ADE"p));.

Finally, we symmetrize Sy, by the minimum-modulus procedure to obtain 5‘{1.
THEOREM 4.3. The vertex matriz approzimations S¢_ are non-singular, diagonally

dominant M -matrices.
Proof. See [8] for details. 0

5. Numerical Results. We now present results of numerical tests on the rate
of convergence of the Fourier and Probe variants of the BPS and VS algorithms. The
tests were conducted for the model elliptic problem (1) for various subdomain sizes H,
and fine grid sizes h. The following three coefficients were tested:

1. a(z,y) = I, the Laplacian, see table 1.

2. a(z,y) = €'%¥1, highly varying smooth coeflicients, see table 2.

3. Highly discontinuos coefficients of Fig. 5, see table 3.
The elliptic problem was discretized using the standard five-point difference stencil, see
[19], on an (n+1) x (n+ 1) uniform fine grid with mesh size 2 = 1/n. The subdomains
were chosen to be the sub-rectangles of an (n, + 1) X (n, + 1) uniform coarse grid
with mesh size H = 1/n,. The coarse grid matrix Ay was chosen to be the five-point
difference approximation of the elliptic problem on the coarse grid.

The entries of the exact solution were chosen randomly from the uniform distri-
bution on {~1,1] and the initial guess in the conjugate gradient method was chosen
to be zero. The estimated condition number, k, of the preconditioned system, and
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TABLE 1
Laplace’s equation: a(z,y) =1

h-T | Ovlp | FBPS PBPS EVS FVS PVS
_H' | n/H [ & |[IIN| % |IIN|  [IIN| & JIIN| & |IIN
322 | 1/16 |143| 11 | 99 | 9 |34 7 |57 | 11 | 32| 8
324 | 1/8 |100] 14 | 74 | 11 |26 8 | 45 | 11 | 25 | 8
328 | 1/4 | 64 | 12 |54 | 11 |25] 8 | 85 | 10 | 24 | 8
642 | 1/32 (193 | 12 |171| 11 (43| 7 |72 | 11 | 40| 9
644 | 1/16 |145| 14 |113| 12 |34] 9 |50 | 13 | 32| 9
648 | 1/8 [103| 14 | 80 | 12 [281 9 |46 | 12 {27 9
6416 | 1/4 | 65 | 13 | 56 | 11 |26| 8 |36 | 10 | 25 | 8
1282 | 1/64 | 25.0 | 13 |31.2] 18 |55] 8 | 9.0 | 11 | 65 | 11
1284 | 1/32 [198| 16 |184| 15 |44 10 | 7.4 | 13 | 41 | 10
1288 | 1/16 |147] 16 |121| 13 |35| 9 | 50 | 13 | 84| 9
12816 | 1/8 [104| 14 [ 83 | 13 |28] 9 |46 | 11 | 27| 9
12832 1/4 | 65 | 13 | 56 | 11 |26] 8 | 36 | 10 | 25| 8
2562 | 1/128 [ 315 | 13 | 550 17 |68] 9 |11.0] 13 |11.6] 13
2564 | 1/64 | 254 | 16 |33.0] 19 | 55| 10 | 91 | 18 | 7.2 | 13
2568 | 1/32 | 19.7| 16 | 185 15 | 45| 10 | 7.3 | 13 | 4.3 | 10
25616 | 1/16 | 14.7| 16 | 124 13 |35] 9 |59 | 13 | 33 | 9
25632 | 1/8 |104| 14 | 84 | 13 |28 9 | 46 | 11 | 271 9
25664 | 1/4 | 65 | 13 | 57| 11 |26 8 |36 | 10 | 24 | 8

the number of iterations, ITN, required to reduce the initial residual by a factor of
107° (ie., lirellz/ll7olla < 107% ) are listed in the tables. Unless otherwise stated, the
number of nodes of overlap, N,,, in the vertex regions is 1, i.e., there is one node on
each vertex segment V), N E;;. The overlap ratio 8 = h/H is listed as Ovlp.

Discussion. Tables 1 through 3 compares the performance of the various meth-
ods for the three sets of coefficients listed above. Table 1 corresponds to the Laplacian.
In agreement with the theory, these results indicate that the Fourier variant FVS, has
an observed rate of convergence independent of the mesh parameters H, i for fixed
overlap ratio Ovlp. Moreover, the actual iteration numbers are quite insensitive to the
choice of parameters H, h and Ovlp. For the range of subdomain and fine grid sizes
tested, the performance of PVS is very similar to EVS. However, as the number of
nodes per edge increases, it is expected that the PVS version would deteriorate, based
on properties of the probe preconditioner for two subdomains in [7]. The condition
numbers for the variants of the BPS algorithms grow mildly with H/h, in agreement
with theory. In most cases, due to clustering of eigenvalues of the preconditioned
system, the number of iterations, ITN, was often better than that predicted by the
condition numbers.

Table 2 corresponds to highly varying coefficients. Here again, the results are
similar to those for the Laplacian, and are in agreement with the theory. Moreover,
the rate of convergence of most variants are quite insensitive to the relatively large
variations in the coeflicients a(z, y). In order to see the importance of scaling by the
coefficients, in table 2 we also tested a variant nsFVS of the FVS preconditioner, in
which the edge approximations were not diagonally scaled, but were instead scaled by



FOURIER AND PROBE VARIANTS

TABLE 2

Highly varying coefficients: a(z,y) = ']

24

P Ovlp FBPS PBPS nsFVS FVS PVS
_g! h/H K ITN K ITN K ITN K ITN K ITN
322 1/16 {225 | 11 184 9 16.1 | 18 7.5 11 4.4 9
324 1/8 134 | 15 | 11.0| 13 7.2 13 5.1 11 3.2 9
32.8 1/ 4 7.0 12 6.2 11 4.0 10 3.9 10 2.5 8
64.2 1/32 1289 12 | 259 11 |24.5] 23 9.5 11 5.8 9
64 4 1/16 {176 16 | 155 | 15 |[11.3] 16 6.5 12 4.0 9
648 1/8 j11.0| 12 9.1 12 5.6 12 4.9 11 2.8 8
64_16 1/ 4 6.6 12 5.8 11 3.7 10 3.7 10 2.5 8
1282 1/64 | 36.3| 13 |45.0| 14 [ 358 28 |11.8| 12 8.6 11
1284 1/32 | 244 16 | 233} 15 | 161 19 8.4 13 5.1 10
1288 1/16 | 15.7| 14 | 13.2| 13 7.7 14 6.0 12 3.6 10
12816 | 1/8 | 104 | 14 8.4 11 4.7 12 4.6 11 2.8 9
12832 | 1/4 6.5 12 5.7 11 3.6 10 3.6 10 2.4 8
2562 | 1/128 {442 14 |77.2| 17 |32.0| 24 |144| 13 151} 14
2564 1/64 {293 17 (414 22 [16.2| 19 |10.1| 13 8.5 13
2568 1/32 {1 208| 16 |202} 15 8.0 14 7.7 13 4.4 10
256_16 | 1/16 | 15.0| 15 | 124 13 5.0 11 6.1 13 3.3 9
256321 1/8 |103] 14 8.2 12 3.8 10 4.7 12 2.7 8
25664 | 1/ 4 6.5 12 5.6 11 2.9 9 3.6 10 2.4 8
TABLE 3
Discontinuous coefficients: See a(z,y) of Fig. 5.
h1 Ovlp FBPS PBPS FVS PVS
_HY | R/H £ |ITN| « (IIN| « (ITN| « (ITN
324 1/8 1102 13 7.5 11 6.1 12 8.1 11
328 1/4 | 6.6 12 5.2 10 8.5 13 3.7 9
64.4 1/16 | 147} 15 | 111 11 9.3 14 (101} 11
64.8 1/8 {101} 14 8.1 12 8.4 14 5.2 10
6416 | 1/4 | 6.5 13 5.6 11 6.9 12 4.1 9
1284 [ 1/32 (196} 17 [18.1| 16 | 123 | 14 6.8 11
1288 [ 1/16 [ 144 16 | 121 | 14 | 115 15 5.9 i1
12816 | 1/8 [ 10.2]| 14 8.3 13 6.4 13 3.4 9
12832 1/4 | 6.6 13 5.7 11 6.8 12 4.1 9
2564 | 1/64 1254 19 [33.0 ] 17 1491 15 7.8 13
2568 | 1/32119.3| 17 |18.7| 16 8.8 15 4.9 11
25616 | 1/16 | 148 16 | 123 | 13 | 124 16 6.9 11
25632 1/8 {103 14 8.4 13 8.6 14 6.0 10
25664 | 1/4 | 6.5 13 5.7 11 6.0 12 4.1 9
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a scalar a;; on each edge Fy;, ie. 5’5“. = oy;Wdiag(p, )W, where oy; = ﬂw__g_)%(z_;_gl)’
for some point (z;, ;) € Q; and (z;,y;) € §;. As the results indicate, this variant was
much more sensitive to the variations in the coefficients.

Table 3 refers to the case of the highly discontinnous coefficients of Fig. 5. The
performance is similar to the case of smooth coefficients, and the results indicate that
the rate of convergence of all variants is quite insensitive to the jumps in the coefficients.

Conclusions: Both the Fourier and Probe variants of the vertex space algorithm
are designed to be efficient alternatives to the original VS algorithm. Our experiments
{for a wide range of coefficients and grid sizes show that the efficiency does not come
at a price of deteriorated performance. We hope that these variants will provide flexi-
ble and efficient methods for solving second order elliptic problems using the domain
decomposition approach.
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