CHAPTER 42

Heterogeneous Domain Decomposition for Acoustic
Bottom Interaction Problems

Ivar Lie*

Abstract. Underwater acoustic phenomena in shallow waters are highly dependent on the acoustic and
topographic properties of the bottom. It is therefore important to include modelling of both sea and bottom
in realistic models for underwater acoustics.

We describe a domain decomposition technique using spectral collocation to solve the equations for non-
linear acoustic propagation in the sea and the equations of linear elasticity in the bottom. The interface
conditions between the subdomains are expressed in terms of characteristic variables for the different set of
PDEs.

Numerical results showing the time evolution of the velocity vector and the stress tensor for some types of
acoustic sources are presented to show the validity of the interface conditions.

1. Introduction. Domain decomposition (DD) techniques using different sets of equa-
tions in different subdomains has been investigated recently, e.g. [ReiRod89] for the applica-
tion to boundary layer problems, and [GaQuaSa90] for the application to coupling between
hyperbolic and elliptic equations.

Few results have appeared on coupling different sets of hyperbolic equations, but a slightly
related problem of shock fitting in spectral methods is discussed by Hussaini and Kopriva,
[Hussain85]. Kopriva has in a series of papers and reports, [Kop86, Kop89a, Kop91], developed
a homogeneous multidomain technique for solving hyperbolic PDEs by spectral methods.
His approach of using so-called generalized Riemann variables will be generalized and used
extensively here. Quarteroni [Quart90] has developed a method for homogenecus domain
decomposition for hyperbolic systems based on subdomain iteration. The tools he uses to
develop the interface procedures are similar fo those of Kopriva.

Macaraeg and Streett [MacS$ir88] are using a multi-domain technigue for conservation
laws based on a flux balance principle. Their method counld possibly be generalized to solve
different equations in different subdomains if the physical boundary conditions match the
flux expressions in the method. The spectral element method, see e.g. [Patera84], applied to
hyperbolic PDEs uses the same interface priuciple as in the papers by Kopriva.

The theoretical analysis of multi-domain spectral methods for hyperbolic equations is
still in a very early stage even if the stability and convergence analysis for a single domain
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is fairly complete, see [GoLiTa87a] and [GoLiTa87b]. Funaro, [Funaro90] analyzes the single
model equation u; = wu, with penalty type of boundary treatment and obtains convergence
estimates for both Legendre and Chebyshev methods. A convergence analysis for a linear
constant coefficient system is presented in [Quart90] using techniques different from those
used by Funaro.

Acoustics in a coupled ocean-bottom medium has been discussed extensively in the acous-
tics literature, see e.g. [Jensen84] [Jensen90]. Computations using finite difference and finite
element methods are presented, e.g. in [Steph88] using the ordinary wave equation for the
seawater. However, the numerical methods used in these computations does not use domain
decomposition techniques. Fornberg, [Fornb87] applies the Fourier methods to the linear elas-
tic and acoustic equations and hence circumvents all boundary and interface conditions for a
finite domain.

In the following sections we will derive interface conditions for the sets of equations
describing the acoustics in seawater and ocean bottom. We consider two-dimensional rectan-
gular domains as shown in Fig. 1.1. The types of boundary conditions are indicated on the

figure.

free
open Seawater open
open Bottom open
open/Dirichlet

Fig. 1.1. Seawater and ocean botlom domains with boundary conditions.

2. The governing equations and characteristic boundary conditions.

2.1. The equations for seawater. In the seswater we use the equations for adiabatic
wave motion in two space dimensions and include gravity to enable the model to take internal
waves into account. The equations express the conservation of mass, momentum and entropy:

{2.1) Pt+ pus + pvy +upe +vp, =0
(2.2) ue + utt, + vy + (1/p)pe = 0
(23) v+ uvz +ouy + (1/p)py = —9

(24 Pe+ upe + 90y — C(pe + ups + vpy) = 0



508 Lie

where pis the pressure, p is the density, and « and v are the horizontal and vertical components
of the velocity vector respectively.
C is the sound speed given by:

(2.5) Cc? = (g-ﬁ-)s

In addition to the above equations we use the "International Equation of State for Seawater”,
see e.g. [Robert90], to determine C based on temperature and salinity information.

Since we have to use a bounded domain in the simulations we have to impose open
boundary conditions to avoid unwanted reflections from waves leaving the domain. It is well
known that one has to use characteristic boundary conditions for hyperbolic systems. The
equations for acoustic propagation in water are essentially the same as the Euler equations
in gas dynamics, and we can use the results on the characteristics of the Euler equations, see
e.g. [Pulli82], for the development of the characteristic boundary conditions here. For the
boundary conditions we use a locally one-dimensional approach, see e.g [AndLie91].

Consider first the left/right boundary, hence ignoring y-derivatives in the equations. The
characteristic speeds are

{u,u,u+ C,u~ C}
with corresponding characteristic variables

{p—p/C*v,p+ pCu,p— pCu}

The determination of the direction of the characteristics (incoming/outgoing ) is done locally
in time and space. For example, consider a section of the left boundary and assume that 4 > 0
there. Since we always assume that u < C the characteristic corresponding to u—C is outgoing
and the rest of the characteristics are incoming. Characteristic variables corresponding to
outgoing characteristics are computed from the variables from within the domain. Variables
corresponding to incoming characteristics are set to the value of the background field. Slow
modes (those having characteristic speed u) are extrapolated in space and time, for details
see [AndWas89].

For the top/bottom boundaries the characteristic speeds for the locally one-dimensional
system is:

{v,v,v+ C,v—-C}

with characteristic variables

{p - p/C*,u,p+ pCv,p— pCv}
and the same procedure, now based on the sign of v is used here to compute the boundary
values.

Treatment of corner points is relatively tricky, and there is hardly a procedure which can
be used in all cases. We have adopted the strategy used in [AndWas89] and also suggested
by others. The strategy is based on defining a "normal to the corner” pointing inwards and
bisecting the angle between the adjacent boundary lines. The determination of the direction
of the characteristics is done with respect to this normal vector. The boundary treatment is
then done in the coordinate system formed by the normal and the tangent to the corner, the
final operation being the transformation back to the original coordinates.
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2.2. The equations for the ocean bottom. The equations for the elastic medium
are written as a first order hyperbolic system:

(2.6) Polis = 011,20 + T12y

2.7 PolVs = O12.2 + Caz,y + Pag
(2.8) o116 = (A + 2p)uz + Ay,
(2.9) T12,t = p(vs + uy)

(2.10) o2, = Atg + (A + 2p),

where u and v are the velocity components and oi; are the components of the (symmetric)
stress tensor. A and p are the Lamé coefficients, and py, is the density. Both ), p and p can
be space-dependent. The characteristic speeds for this set of equations are well known, see
e.g. [Ziv69}:

{03 :i:CP, :}:CS}

ep = A+2p c=\/E
P = P ’ '] 2

are the speeds for P- and S-waves respectively.
If we again use a locally one-dimensional approach for boundary treatment, we get the
following characteristic variables for the left /right boundaries:

where

{-2Ao11 + (A + 2p)022, 011 F prepts, 012 F presv}

Since we use a linear hyperbolic system the characteristic speeds have fixed sign, so the
direction of the characteristics is independent of space and time. '
For the top/bottom boundaries we have the following characteristic variables:

{(A+ 2p)011 — Ao23,022 F poepv, 012 F pocst}

The open boundary treatment goes exactly as for the seawater case: The outflow variables
are computed from within the domain and the inflow variables are given the values of the
background. The corner points are treated in the same way as described for the seawater, the
only difference being that the stress tensor has to be transformed (rotated) to get the correct
expressions for the characteristic variables in the local coordinate system for the corners. The
transformed stress tensor ¢’ is computed as follows:

0l = QR0

where {a;;} is the transformation matrix. See [AndLie91] for details.

3. Interface conditions. We consider now the interface between a seawater domain
and a bottom domain (see figure 3.1)) and we will derive interface conditions bam.zd on the
characteristic variables for the two sets of equations derived in the previous section. The
number of possible types of waves in such a configuration is large, see [Brekh60]. The two
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main classes are the volume waves in the two media and the surface waves. However, all the
waves will propagate along the characteristics for the two sets of equations. This implies that
the interface conditions based on characteristic variables will include the surface waves. For
a discussion on open boundary conditions for surface waves, see [Bamberg88]

The interface conditions between the two media will have to be based on the physical
boundary conditions at the interface. These are as follows:

a)

b)

Continuity in normal velocity:
(u—-v)-n=0

where u and v are the velocity vectors for seawater and bottom respectively, and n
is the normal vector of the interface.

Tangential velocity condition. This depends on the physical properties of the inter-
face.

Continuity in stress:

_ 1
Oiin; — O35n; = ‘y(E -+ n;

=)
2

where &;; and o;; are the stress tensor components in water and elastic medium
respectively. The term on the right hand side is the surface tension which can be
neglected in our case. Obviously, &;; = pd;; so the conditions reduces to pn; —oyjmn; =
0. For a horizontal interface we then have the physical boundary conditions:

p—o3=0, o12=0, Uy~ vy =0

and a slip condition determining the horizontal velocity. In addition, the interface is
usually assumed to be stress free, see e.g. [Brekh60), thus o3; = 0.

Consider now the characteristics for the two sets of equations at the (horizontal)
interface. In water we have p &+ pCv as the acoustic modes and in the bottom we
have o432 F prepv, and 019 T pycsvy as the pressure and shear modes. We see that the
corresponding characteristics p+ pCv and 023 F ppcpva have the same structure and
that the essential variables (p,v, 032, v3) are continuous at the interface for the two
pairs of characteristics. This fact will be utilized in the construction of the interface
conditions.

‘We will now describe a modification of the interface procedure described by Kopriva
[Kop91], for construction of the interface conditions. The basic procedure is described
in detail in [Kop91], and we refer to this report for the background for the procedure.
Kopriva’s terminology will be used throughout.

Consider the generalized Riemann variables for the water equations. These are, from
[Kop91}:

R*=p+pCu, $* = p+ pCu

corresponding to 4 chosen bicharacteristics, see figure 3.1. Note that these Riemann
variables are identical to the characteristic variables derived in the previous section.
R* and S* are computed from spectral approximations within the subdomains and
the interface procedure consists of a correction technique for the interface variables.
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Once this correction has been computed we use it for both domains according to the
physical boundary conditions,

To illustrate the interface procedure, consider a point of outflow from water, see Fig.
3.1: Note that in this case the bicharacteristic ST originates from the bottom while

S_.

Rt M R- Seawater

/ Bottom

s+

F1q, 3.1. Correction procedure for outflow point from water

the rest originates from the water.
From the expression for R* we immediately get the corrected u:
=1

Ugorr — 20C
which of course is identical to the value computed in the water. The correction
procedure then consists of correcting the interface value for the bottom depending
on the slip conditions used.
To compute the vertical velocity we use the following procedure: We use the §—-
characteristic p— pCv, and assume that we have an unknown inflow characteristic of
the same type: §+ = p+ pCo. The variables in this characteristic will depend on the
corresponding variables both in water and elastic medium because of reflection and
transmission of waves at the interface.
Similarly for the elastic medium, we use ST = @33 — ppcpvs and the unknown inflow
characteristic §~ = 93 + ppepda. The corrected vertical velocity in water is

.

(R*-R")

_ ot &+ _ -
. Ueorr = 2PC(S S )
and in the elastic medium:
1 . "
V2,corr = 2P6¢P(S -8 )

From the physical boundary condition we know that these velocities must be equal
and hence we obtain the relation

N C | - n
Gt = (5 _sty=q(§ -5+
L2575 = (8 - 57)
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From the continuity of the vertical stress we get another relation:
St4 8- =5t+5-

From these equations we can compute the unknown characteristic variables:

2 -2y 149 .-

+ Ll TSI &
(3.1) $ _1_75 +1_7S

- 2 - 149
3.2 § = ——g5 L 1g+
(3-2) 1+ 1-7

In the monograph of Brekhovskikh [Brekh60], plane wave reflection and transmission
in layered media is studied in detail, and the reflection and transmission coeflicients

obtained there (for waves at normal incidence) are just }—fy‘ and —13_{-:’_7, 80 we can give

the expressions for $* and §— a physical meaning.
We then get for the corrected vertical velocity and pressure:

1 2y oy 1+74- “w_ 1 7 - ot
(33)  Veorr = 5 G(—7 ST H TS = ST = E (ST -5
O S TS S ko I S e ST SR
(34)  Peorr = (-2 H TS HS ) = TS 7S

We see again that the reflection and transmission coeflicients appear in the expres-
sions.

Note that the characteristic variable p—p/C? has no equivalent characteristic variable
in the elastic medium becaunse p is not a variable in the elastic equations we consider.
We suggest the following method for calculating the corrected density peopr:

Peorr *pmr/Cz = p_p/c'2

where the unsubscripted variables comes from the computations in the water and
Peorr is computed from the formula above. Hence the density difference poorr — p is
directly proportional to the pressure difference peorr — p which is fairly natural for
both inflow and outflow situations.

The shear stress at the interface is set to zero due to the continuity condition for
stress, Since we assume that the interface is stress-free in the horizontal direction,
we let 047 = 0.

The interface corner points are treated with a technique combining open boundary
and interface treatment. Consider the left interface point and assume the v < 0, see
Fig. 3.2. As before we get for the horizontal velocities in the two media:

1
Ueorr = 5;'67(190 —~p+pCv)

U2,corr =

2pece {011 + prepus — 011,0)

where pg and 033 ¢ are values of the background field for pressure and horizontal
normal stress.
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/7

R+

/i

""’/7 Seawater

\._/ Bottom

S+

Fic. 3.2. Left interface point

To obtain the expressions for the vertical velocity and pressure we use the same
procedure as described above for the interface line. We use the following set of
characteristics

S =p—pCv
8* = p+ pCo
R* =p+ pCu

S* = 022 ~ pycpua
57 = 622 + prepiy
From the continuity of the vertical velocity we again have:
i 1
2pC 2ppep

(§*~57)= (5~ -5%)

or
§t—85 =45 -85
For the pressure (in the water) we use a formula of the type proposed by Kopriva:
1 - 1 5 1 -
(3:8) Peorr = (57 + 8% + R*+R -2p)= 5™+ 5ty + ,:,(R*‘ +R)-p

Note that this formula {like the one used by Kopriva} contains a non-characteristic
quantity, namely the pressure p. However, Kopriva reports success with this type of
formula in his series of tests despite the lack of argument behind it.
From the continuity condition for vertical stress we get the relation:

Sty 6§ =85"+5%

and as before we have
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from which we get the corrected vertical velocity and pressure:

IR e P
(36) '”co‘rr-—pc,]-__‘7 S S )
I AT S S R¥ 4+ R~ —

(3.8)

We see that if we ignore the contribution from the horizontal characteristics, we get
the same expressions as we derived for the interface line.

The formula peorr — Peorr/C? = p — p/C? is used to compute the corrected denmsity
for the water. From the assumption of the interface being a stress-free surface we get
o2 = 0 and 011 = 0.

The right interface point is treated in a similar way, and the formulas are not presented
here.

4. Numerical experiments. Below we show some results from the ocean/bottom
acoustic model with interface conditions as described in section 3. We have used a
32 x 32 grid in both domains, and the boundary conditions are as shown in Fig. 1.1
and described in section 2. The physical dimensions of the domains are 600 x 300
meters. The experiments have been run on a Cray X-MP.

In the first experiment an acoustic pulse is generated at ¢ = 0 in location (—0.5, ~0.5)
in computational space. Figures 4.1 and 4.2 show the pressure (033 in the bottom)
and velocity fields after 2 (scaled) time units. Fach domain is in fact quadratic, the
plots have been scaled down in the y-direction to make the figures smaller. The
upper wavefront in seawater is the direct wave from the pulse propagating upwards.
The lower wavefront is a reflection from the interface. In the bottom we see a down-
wards propagating P-wave which is detached, and surface waves propagating hori-
zontally.From the velocity plot we see that the direct wave in the seawater and the
leftmost surface waves are about to leave the domains, thus indicating the correctness
of the open boundary conditions. Fig. 4.3 shows the shear stress in the ocean bottom
at the same point in time.

In the second experiment an acoustic pulse is generated at the center of the ocean
bottom domain. The boundary conditions at the bottom of the ocean bottom is
now zero normal velocity. The pressure field after 1.5 time umits is shown in Fig.
4.4. The upper wavefront in the ocean bottom is a reflection from the interface, thus
propagating downwards. The lower wavefront is a reflection from the lower boundary
(Dirichlet conditions) and is propagating upwards. An upward propagating wave
transmitted from the bottom has just been generated in the seawater. At 0.5 time
units later the two waves in the ocean bottom have interacted and formed a complex
pattern as shown in Fig. 4.5.

5. Conclusion. We have developed a domain decomposition technique for cou-
pling the equations of acoustic propagation in water with the equations of linear
elasticity via the characteristic variables for the two sets of equations. This tech-
nigue makes it possible to study ocean/bottom acoustic interaction in detail for low
frequencies. The technique can also be extended to the case of arbitrary bottom



515

HETEROGENEOUS DOMAIN DECOMPOSITION

=2.0

tatt

rimen

4.1. Pressure field in first ezpe

FiG.

Ff p

7l

S .

=y

-~
v
i

ANV be e

fltvdgeadae

SN isrras
/v/J/I,\-\~«\\\\\. ’
J\@/f,_l.:::..

‘
Lol ) .
i Ay ¥ I{.:__Tl\\\\\\-..
| :
el PR 24 4 P e
,/.,r (SN e
i
RO SRR _ DR M PR
oy, A __...I..i, RIS G
‘
S Tl e et
1
e /- M\)::_.::,:,...
' 2x !

AR

¥ SESIANAN gL

b oevde
-

=2.0

FI1G. 4.2. Velocity field in first ezperiment at ¢

]

F1G. 4.3. Shear stress field in first ezperiment at t



516 LIE

FIG. 4.4. Pressure field in second ezperiment at t=1.5

FIG. 4.5. Pressure field in second ezperiment at t=2.0
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profile thus making it possible to study specific acoustic phenomens, e.g. sloping
bottom, see [Lie91].

The numerical experiments show that the interface conditions works very well for a
number of test cases.
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