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Abstract

Heterogeneous domain decomposition is a field of research bridging (homogeneous)
domain decomposition and mathematical modeling. The underlying mathematical as-
sumption is that differential equations of different kind are coupled one another across
interfaces of disjoined subdomains. In several circumstances such an approach allows a
more flexible description of the physical problem at hand and fosters the use of different
numerical methods within different zones of the computational domain. Besides, it may
sometimes yield a remarkable simplification of the solution algorithm.

Here we review the basic issues of heterogeneous domain decomposition, discuss its
main theoretical properties together with its algorithmical aspects, and present some ap-
plications to fluid dynamical problems for convective-dominated flows. Several numerical
results sustain our theoretical conclusions.

1. Introduction

Heterogeneous domain decomposition arises whenever in the approximation of
certain physical phenomena two different kind of (initial) boundary-value problems
are assumed to hold within two disjoined subregions of the computational domain
Q, say Ql and Qz.
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This is a generalization of the classical, homogeneous domain decomposition
approach, in which the same kind of problem is faced upon each subdomain.

From a mathematical viewpoint, a crucial issue is the set up of matching equa-
tions across the interface separating the two subregions. The derivation of such
interface conditions oughts to be carried out sticking as close as possible to the
physics of the underlying problem. Most often, the inspiring criterium should be
that the solution to the coupled problem (the one provided by the individual sub-
problems in ©; and €, along with the interface conditions) is also the limit of
solutions to a sequence of global variational problems set in the whole domain (.

In everyday scientific applications we may encounter problems that are het-
erogeneous “in nature”. A family of examples is provided by the interaction be-
tween fluids and solids. For instance, this is the case of off-shore mechanics, o
else of undersea pipelines, or again of underwater acoustic phenomena in shallow
waters ([L]). Typically, the above problems can be modeled by the coupling between
Navier-Stokes equations and the system of elasticity.

Another example is provided by the propagation of acoustic waves in het-
erogeneous media, whose mathematical modeling is accomplished by the Maxwell
equations whose conductivity coefficient degenerates upon a subregion of the com-
putational domain ([DL], [QV2]; see also [KN]).

The cohexistence of different flow regimes in the upper athmosphere, the molec-
ular and the continuous one, can be modeled through the coupling between a Boltz-
mann kinetic model and the Navier-Stokes equations for viscous, compressible fluids
(C], [BLTQ)).

Still in aerodynamics applications, let us mention the subsonic-supersonic tran-
sition for potential flows (e.g., [G], [F]).

The crystal growth’s process is another instance of multicomponent problem
that is modeled by multiple differential equations mutually interacting one another
(BD)).

At some extent, most free-boundary problems can be regarded as different
boundary value problems which are coupled throughout an interface whose location
and shape are both unknowns.

Another class is provided by those problems which, although homogeneous in
nature, can be faced in an heterogeneous fashion, after reducing the given problem
to a simplified one in a subregion of . We encounter situations of this type when
Navier-Stokes equations for incompressible flows are matched with shallow-water
equations in a bay or in the vicinity of a coast.

Another very important situation arises in fluid dynamics whenever convective
dominated viscous flows yield internal and/or boundary layers. In aerodynamic
simulations, neglecting the viscous effects far from sharp layers bring to the coupling
of Euler and Navier-Stokes equations.

Similarly, neglecting the thermal conductivity coefficient in a thermodynamic
problem, or else the viscous diffusivity in convection-diffusion-reaction equations,
leads to the coupling of hyperbolic and parabolic equations.

The latter approach, that is based on the use of a fictitious interface between
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the two inhomogeneous subregions, has provided the basis for many numerical al-
gorithms since the early 80’s (e.g., [CGVV], [DGPT], [GPT], [S], [HH], and the
references therein).

In more recent years, this issue has been faced in a rigorous mathematical
fashion. To start with, a general criterium to find out interface conditions has been
devised. Then, sound numerical algorithms have been set up allowing the solution
to the coupled problem to be achieved through a sequence of independent solves
upon either subdomain.

With regard to convection-diffusion problems, the analysis for one-dimensional
systems and two-dimensional equations is carried out in [GQ] and [GQS], respec-
tively, whilst algorithmical aspects are discussed in [FPQ]. Another example, the
so-called generalized Stokes problem, is faced in [QSV] and [CZ] in the framework
of finite element and spectral approximations, respectively.

The potential interest behind this approach is manifold. Using two rather than
one model problem allows higher flexibility in setting up the numerical method
that fits better the nature of the physical phenomenon within each subregion. Most
often, far from sharp layers, the expected solution is smooth and exhibits slow
variations, hence very inexpensive numerical approximation on the reduced problem
suffice to produce accurate results. Moreover, the coupled viscous-inviscid problem
vields a couple of subproblems that might be solved sequentially one after the
other, whenever the convective field has constant orientation at the interface. This
splitting property allows the achievement of the solution of the coupled problem
without any iteration between subdomains.

Along this paper we review the heterogeneous domain decomposition method
for convection-diffusion problems and discuss several theoretical and algorithmical
aspects of the fictitious interface method.

An outline is as follows. In Sect. 2 we introduce a linear convection-diffu-
sion problem, and we formulate the reduced problem that couples the convection-
diffusion equation with the convection one through proper interface conditions. We
then present some test cases enlighting the effectiveness of the reduced model. In
Sect. 3 we discuss the algorithmical aspects of our approach. In particular, we set up
an iteration-by-subdomain procedure to solve the reduced problem, and discuss its
rate of convergence as a function of the several parameters of our approximation. In
Sect. 4 we analyze the issue of interface location. In Sect. 5 we show how to extend
our approach to the case of non-linear problems, by analyzing at which extent the
interface conditions can be devised for several kinds of time-advancing methods. In
Sect. 6 we conclude mentioning other applications of the above approach.

2. Basic principles and problem statement
For the sake of exposition, we focus on a scalar equation of convection-diffusion

type. We make use of the following notations: € is a bounded two-dimensional
domain, 9 denotes its boundary that we assume to be partitioned in the form
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0Q = 8Qp U 80y, n will denote the unit normal vector on 9, directed outward.
We consider the initial-boundary value problem: find w = w(z, t) satisfying for
any positive ¢

-af';’—div(qu)+div(bw)+cw=f , T€Q
w=1wg, xEQ,t=0

(2'1) w:d, $€a(lD
%:0, (CeaQN7

where: f(z,t), ¢(z,t), b(z,t), we(z), d(z,t) are given functions; v = »(z) > 0 i
the viscosity coefficient. It is well known that, under mild regularity assumption
on the data, the above problem has a unique solution for all time (e.g., [HP], [LM]).

We are interested in those physical applications in which the viscous (second
order) term is dimensionally negligible upon a subregion, say ;, of the domain
2. This situation occurs, typically although not exclusively, in boundary layer
simulations. From a numerical viewpoint, in any such application it is often useful
to face a reduced problem that couples the original equation in Q, = Q\Q; with the
inviscid equation in £2;. The major problem in this respect is the set up of matching
conditions between the viscous and inviscid solutions across the subdomain interface
I.

As far as problem (2.1) is concerned, its reduced counterpart reads as follows.
Find u and v such that for any positive ¢ they satisfy:

(2.2) %;i +divibu)+cu=f , e
v ; .
(2.3) y i div(vVv) + div(bv) +cvo=f , z€,
2.4) (blfh -ar)u = (blg2 ‘nr)y , z€ly,
v
(2.5) (b‘g1 -np)u = (b192 snrjv — V_aT‘ , €T
T
(2.6) u=d , z€0Qpn 6@1,;“
(2.7) v=d , €IQpNaQ,

(28)

g|e

=0, z€0Q8N080,;.
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In addition, at t = 0 u = wp in ©; and v = wp in Q3. Symbol explanation is as
follows: nr is the unit normal vector on I, directed toward Q,,

Tin = {z € T|(bjq, - nr)(z) < 0} , 8 i = {z € 8% \T'|(b-n)(z) < 0}

(notice that these sets can depend on t). An example for a fixed time is described
in Fig. 1.

Fig. 1. The partition of the domain { into §); and 2, at a given time .

The matching conditions are given by (2.4), (2.5); the former states that con-
tinuity occurs only on T';, (provided b - nr is continuous), while the latter enforces
the flux balance on the whole I'. For the case of a time-independent problem these
interface conditions have been introduced and thoroughly analyzed in |[GQS], where
the leading principle was to obtain the coupled problem by a singular perturbation
analysis. Precisely, the interface conditions of the reduced problem are the limit (as
€ goes to zero) of those pertaining to a full viscous problem in which the viscosity
coeflicient v was replaced by € within ;.

The continuity of the fluxes across T' is a most desirable property that follows
from the remark that the solution (u,v) of the reduced problem is actually the limit
of the solution of a global variational problem in the whole Q.

The apparently bad news is that the reduced solution itself can be discontinuous
on Iy := '\ T, whereas the solution to the original problem (2.1) is continuous
everywhere. However, the size of the jump is as small as the value of the viscosity
on I'. This issue is discussed in Sect. 4.

From the point of view of numerical approximation, solving the reduced prob-
lem requires the using of a spatial discretization based upon finite element, finite
difference, spectral or other methods, then to advance in time, typically by a fi-
nite difference scheme. It goes by itself that the interface conditions (as well as
the boundary conditions) need to be fulfilled at the new time level. In Sect. 5 we
discuss the practical aspects of this issue for the case of nonlinear problems.

Here below we report some numerical results for a steady convection-diffusion
problem. The spatial discretization is achieved by the spectral collocation method
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(e.g., [GO], [CHQZ]), in which u (resp., v) is approximated by un, (resp., vn,), an
algebraic polynomial of degree less than or equal to N; (resp., N3) in each variable.
(For a detailed presentation of the spectral collocation method for this kind of
problems we refer to [FPQ]J).

The problem at hand is: find w satisfying

(2.9) —div(vVw) + div(bw) +cw=f in =(-1,1)x(-1,1) ,

with boundary conditions as in (2.1). Notice that any implicit time-advancing
method on (2.1) yields at each time-level a problem like (2.9).
The reduced problem is: find » and v satisfying

(2.10) div(bu)+cu=f in @

(2.11) —div(vVv) + div(bv)+cv=f in Q, ,

together with the interface conditions (2.4) and (2.5), and the boundary conditions
(2.6)-(2.8).

The first example refers to the case in which:

(2.12) v=10"* | b=(1+ %cosm’ml,l)t , ce=f=0.
The boundary conditions for w are as follows: w = 1 on the sides £; = —1, z, = -1,
dw

o = Oon z; =1 and w = 0 on z; = 1 (notice that the latter condition yields a
boundary layer of thickness v in the vicinity of the vertical side z; = 1). We take
the interface I’ equal to the vertical side z; = 1 — 4/v. In the current example the
inviscid equation is therefore solved on a domain which is about 200 times thicker
than that where the complete equation is faced. Fig. 2 refers to a calculation
performed using Ny = N = 28 as polynomial degree of the spectral solutions.

This numerical solution is practically undistinguishable from the one achievable
solving the-fully elliptic problem (2.9) everywhere with the same partition as before

" and the same polynomial degrees. Moreover, one can play to reducing the number of

degrees of freedom in Q; without compromising the overall accuracy. In this regard,
we report in Fig. 3 the results obtained on the same problem as before, using now
N, = 14 (rather than 28). The maximum difference between the solutions of Figs.
2 and 3 is 0.0014.

An even more dramatic situation is reported in Fig. 4, which refers to the case
where

(2.13) y=T-10"* , b=(0,~3(e ~ 1) , e=f=0,

and the boundary conditions are the same as before. (This example is also consid-
ered in [FFH]). The interface I is located at zy = 0.5, and N; =4, Np = 20.
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g

Fig. 3, Numerical simulation of problem (2.10)-(2.12) using a coarse grid in §};.
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Fig. 4. Numerical simulation of the boundary layer problem (2.10), (2.11), (2.13).

Notice that in both cases reported in Figs. 3 and 4 the spectral approximation
is of non-conforming type.

We show here below that the issue of interface conditions for heterogeneous
equations is a very delicate task, and that our theory in this respect is sharp. A
fairly common approach has been to solve everywhere in  the purely convective
problem, then to correct the inviscid solution by solving the complete convection-
diffusion problem upon (25 solely. For the sake of clarity, we can refer to this method
as to wviscous-correction approach. The key step in this method is how to provide
boundary data on I for the viscous correction. The most natural approach in this
respect is to satisfy either the continuity of the solution (Dirichlet condition) or else
the balance of the fluxes (Neumann one) across the interface. Both approaches can

reveal strongly unadequate, as shown in next examples. We still consider problem
(2.9) where: ;

(2.14) b= (z:1(z1 —0.8),0) , c=2, f=0,

with boundary conditions: w =1 on thesides z; = —1, 2, =1; w=0o0n z, = -1
and 0.5<z; <1; ;;'1;1’2-=00na:2=1, z9=—1and -1 < zy <0.5.

We first solve the convection equation (2.10) in the whole domain . Then,
setting Q3 = (0.5,1) X (—1,1) and denoting by I" the vertical side z; = 0.5, we solve
the complete problem (2.11) in 5, using as boundary data on I either the continuity
condition v = u (see Fig. 5) or else the flux balance condition —v aa;:)p +(bjg, -nr)v =
(bjq, - nr)u (see Fig. 6). : A

In either case, the computed solution is dramatically different from the one
obtained by the coupling method based on (2.10), (2.11), (2.4), (2.5) using the
same degrees of freedom (see Fig. 7). Indeed, ' = T, for the problem at hand,
and therefore according to (2.4) and (2.5) we should enforce on T' both continuity
and flux balance. Figs. 5, 6, 7 all refer to the case v = 10™2,
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Fig. 5. Numerical simulation of problem (2.10), (2.11), (2.14) with the viscous-correction
approach: continuity (but not flux balance) is fulfilled at the interface.
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Fig. 6. Numerical simulation of problem (2.108), (2.11), (2.14) with the viscous-correction
approach: flux balance (but not continuity) is fulfilled at the interface.

N

TR

COAY ){}{{{(‘“&K‘Q Q’
R AR
BRI \%\\\\\\\\‘éQO

)
TR
MR \§\\\“““x o
\\\} R \\\}‘.:‘4

Fig. 7. Numerical simulation of problem (2.10), (2.11), (2.14) with the correct coupling
method: both continuity and flux balance are fulfilled at the interface.
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Finally, we show in Fig. 8 the maximum error on I' between each of the
solutions of Figs. 5, 6, 7 and the solution to the global viscous problem (2.9), for
different values of the viscosity coefficient v, and the same number of degrees of
freedom.
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Fig. 8. Difference between the solutions displayed in Figs. 5, 6, 7
and the one to the global viscous problem (2.9).

3. Algorithmical aspects

Let us focus now on the practical resolution of the reduced problem (2.2)-(2.8).

A particularly simple situation occurs if, for a fixed time, the sign of fy =
b|q, - nr is constant on the whole interface T' (this yields I' = Ty, if B; < 0, whereas
T =T,y if f1 > 0), as in this case the problems in £, and Q, are decoupled one
another.

(i) Suppose that T’ = T';,,: using (2.4) one can rewrite (2.5) as

hence the problem in Q; can be solved prior to that in Q;. The obtained value of
(bja, -nr)v on T is then used as inflow data to compute the solution u in ;. Thus
the solution of the reduced problem is obtained by only one sweep on 2, and ;.

(i) A similar situation occurs when I' = T',y;. In this case condition (2.4)
disappears, and the inviscid problem in Q; can be solved prior to that in Q. The
value of (bjq, - nr)u that we obtain on T’ is then used as a known data for the flux
of v, allowing the calculation of v in £2,.

The same conclusion holds for steady problems. In this respect, let us notice
that both Figs. 2 and 4 refer to a situation of type (ii), whereas Fig. 7 refers to one

of type (i).
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These examples shed light on a further advantage enjoyed by the coupling
approach, namely the possibility (in many physical applications) of achieving the
global solution by solving only once two subproblems, one in ; and the other in .
(A domain decomposition method for the full viscous problem (2.9) would instead
require iterating between Q; and ;). Of course, this remark about subdomain
iterations doesn’t concern time-dependent problems with ezplicit time-stepping.

(iii) In a general case, the solution to the reduced problem (at any given time)
can be achieved as limit of solutions of the two subproblems (2.10) and (2.11).
Indeed, owing to (2.4) we can restate the interface condition (2.5) as follows:

v
(2.5)1 _anr =0 onTly,
0
(2.5)2 (bjg, - nrjv — ”5??; = (bjg, -nr)u on Ty .

At each iteration, we can therefore solve problem (2.2) in Q; with boundary con-
ditions (2.6) and (2.4) (with the right hand side computed from previous iteration
through a relaxation procedure). Then we solve problem (2.3) in 2, with boundary
conditions (2.7), (2.8), (2.5); and (2.5); (for the latter equation, the right hand side
is taken from the preceding calculation in ©4). Same iterative procedure applies for
the steady problem as well.

This iterative method has been introduced and thoroughly analyzed in [GQS].
For the sake of notation, we will name it the Dirichlet/Neumann (D/N) method.
Details on its implementation are discussed in [FPQ). It is shown in [GQS] that its
rate of convergence is practically independent of all problem’s data, including the
number of degrees of freedom involved by the numerical approximation. We provide
an example by considering the steady problem (2.10), (2.11) where

(31) b=ﬂ(—$2,$1)t (ﬂ>0) y c=1 ) f—_-‘O ,

with Dirichlet conditions u = 0 on {(1,z2)| —1 < 2z < 0} and u = 1 on the subsets
{(l’mZ)IO Sz < 1}7 {(xl,l)l -1< a2 < 0}1 {("19‘”2)4 —1<2 < 0} and
{(z1,-1)|0 < z; < 1}, and homogeneous Neumann condition on the remaining
part of the boundary. We use the decomposition Q = Q; U Q; with @ = (-1,1—
V7)) x (—1,1) and Q5 = (1 — /¥, 1) x (—1,1); then b- nr is positive on the lowest
half of the interface I', whereas it is negative on the upper half of I. The number
of subdomain iterations needed to achieve convergence up to a tolerance of 1072 is
included between 5 and 12 for a broad range of data, namely

103 <v <107, 1<B<15, 20< M <800 ,

where M denotes the total number of gridpoints of the spectral collocation problem.
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In [QV1] it has been proven that the D/N method can be interpreted as a
gradient method (with a suitable preconditioning) for the solution of the interface
Steklov-Poincaré problem

(32) Sindin = ¢in on Ty, s

where );;, is the value of v on T'i,, ¢iy is a known function (depending on the data
of (2.9)), while S;, is a suitable interface operator. Precisely, (3.2) is obtained from
the Steklov-Poincaré equation

(3.3) SA=¢ onT

(where now A = v on I') by formally eliminating A,u¢ = Apr,.,-

At the algebraic level, S is the Schur complement (with respect to A) of the
matrix associated with the reduced problem, whilst S;,, is the Schur complement of
S with respect to Ajy.

The latter problem could be faced directly by a preconditioned gradient me-
thod. Splitting S as S; + Sz, where the subindex refers to the subdomain, the
preconditioner we take is S2 (a spectrally optimal one for the full viscous case
whenever the convective field b vanishes).

We have tried both the Richardson method with minimum residual (e.g., [Y])
and the so-called CGSTAB method ([V]) (the latter is likely among the best versions
of conjugate gradient methods nowadays available for non-symmetric systems). In
Fig. 9 we compare their performances with the one of the D/N method, for several
values of N (the degree of polynomial solution within each subdomain). The test
problem is still that relative to the data (3.1), with =1 and v = 1072,

157

NIT

——.T DN
134 —=®— CGSTAB

&~ Richardson
11 \

o ) \

§ 7 9 1 13 15 i7 19 N

Fig. 9. Comparison between D/N iterations for system (3.2)
and CGSTAB and Richardson iterations for system (3.3).



HETEROGENEOUS DOMAIN DECOMPOSITION 141

The D/N method needs about the same number of iterations as the CGSTAB
method, however we should keep in mind that, for each iteration, the latter method
is three times more expensive than the former one. Furthermore, the D/N method
is carried out on problem (3.2), which is of smaller size than problem (3.3).

4. Interface location and sensitivity analysis

According to our theory, from the interface conditions (2.4), (2.5) it turns out
that the solution to the reduced problem may be discontinuous on I'yy;. The jump,
however, is comparable with the magnitude of the viscosity ¥ whenever the viscous
domain (2, is large enough to embody the boundary or internal layers (if any).
Despite a rigorous proof is available for one-dimensional problems only ([GQ)), a
broad numerical experience supports this conclusion.

We present two elementary examples of steady problems. The former is the
one-dimensional equation

(4.1) VWi twy=1, 0<z<l, w0)=w(l)=0,

whose solution has a boundary layer of thickness » around z = 1. Denoting with o
the abscissa, of the interface point, the jump between the solution v in Q, = (a,1)
and u in @, = (0, a) is given by j(a) = (1+ v)ezp[—v~(1 — @)] — v. The function
v~1j(e) is plotted in Fig. 10 for several values of ». We see that j(a) ~ v as soon
as meas({)z) is asymptotically larger than v (e-g., meas(§2z) = /7).

167 %y
V=tidi
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1.21 V=1d-2
V=1d3
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0.2

0.0

T an e s st cn i e o

0.2 T T T T T J
0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

Fig. 10. Interface jump for the coupled approximation to problem (4.1).
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The second example is provided by the equation

—vAw +wy, =0 in Q= (0,1)?
(4.2) w=0 onthesidez; =0
’ w = cosTxy on the side z; =1
wy, =0 onthesidesz; =0and z, =1 .

Again, there is a boundary layer of thickness v by the side z; = 1. I we take
Q = (0,e) x (0,1), Q2 = (&,1) X (0,1) for 0 < a < 1, and replace (4.2) by
a reduced viscous-inviscid problem like (2.10), (2.11), the jump between the two
solutions u and v across I is

i(@) = vpeap(X*a)[(1 — vA_Yeap(A*) — (1 - vA*Jeap(A- +ap)] !

where
M =1/@n)tp/2 , p=4x?-v? .

We plot »~1j(a) in Fig. 11 for several values of v. The same conclusion as before
holds for this case as well (with an even better behaviour).

v =1.d-3
3o s o o s s € s s 0 s 0 s e

0.87]

0.61

0.4

0.2

0.0

0.2 T T T T - - 1
0.72 0.76 0.80 0.84 0.88 0.92 0.96 100

Fig. 11. Interface jump for the coupled approximation to problem (4.2).

Based on available theory and on our own experience, our conclusion is that
the solution to the reduced problem is quite insensitive to interface’s location and
shape, whenever the interface itself is placed ouiside sharp layers.

For those applications in which no reliable guess is possible about either the
location and the shape of boundary and internal layers, an adaptive procedure
oughts to be devised in order to design the partition of € into ; and ;. Along
this direction, a non-linear (free-boundary like) approch is pursued in [BCR], [AC].
Alternatively, a control problem for interface shape optimization can be set up as
follows. For the sake of simplicity, let us refer to a geometrical situation like that
in Fig. 12, and to the steady problem (2.9).
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x ! (1,1)
I'(or)

Q, ()

Q, (o)
0,0) X1

Fig. 12. Subdomain partition for interface shape optimization.

We look for
[(a) = {72 €[0,1]|z; = a(2z2)} , @ EUsa ,

where, e.g., Uqq is the space of Lipschitz equicontinuous admissible functions, such
that the following cost functional is minimized:

(4'3) I('u(a), v(a)) = A( ) Iblﬂl(a) . np(a)u(a) - blﬂz(a) . nr(a)v(a)lzd'y .

Here, the state equations for v = u(a) and v = v(a) are given by (2.10), (2.11),
(2.4)-(2.8) (now with ;, 2, and I' replaced by Q,(a), Q:(a) and I'(a), respec-
tively). The cost functional monitors the jump between viscous and inviscid solution
across ['oue(a).

Within any gradient (or quasi-gradient) procedure to solve the above minimiza-
tion problem, a stopping criterium could be I ~ |v]?, according to our previous
remark.

Despite our framework doesn’t differ very much from more classical situations
(e.g., [HN]), an existence, uniqueness and convergence analysis for this problem is
not yet available to date.

5. Nonlinear problems

In this section we generalize our previuos approach to non-linear problems. We
stick with a working example provided by the convection-diffusion-reaction equa-
tion:

(5.1) %I‘:—- — div(vVw) + div[f(z,w)] + r(z,w)=0 ,2€Q , >0,
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supplemented with the initial condition (2.1); and boundary conditions that we can
still assume of the form (2.1), (2.1)4. The convective term f is a C1-vector function
that depends non-linearly on w, while the reaction term r may depend linearly or
non-linearly on w.

We are not concerned here with the issue of stating sharp conditions on v,
f and r that ensure the non-singularity of the above problem (for this, see, e.g.,
[Sm]). Rather, we assume that along a time interval 0 < ¢ < T there exists a
unique solution, and deal with the reduction of (5.1) to a coupled problem. Then,
at a given time ¢, Q is partitioned into two disjoint subdomains £2; and 3, whose
common interface is again denoted by I

We look for the solution to the reduced problem:

(5.2) %tu_ + div[f(z,u)] + r(z,u) =0 ,z€Q ,t>0

(5.3) % — div(¥yVv) + div[f(z,v)] + r(z,v) =0 ,z€Q, ,t>0.
A theoretical analysis on interface conditions for this non-linear problem is nof
available as yet. However, by analogy with the linear case we suggest the following
matching across I':

(5.4) f(z,u) - nr = f(z,v) -nr onlip = {z € T|fy(z,u)  nr <0}

(5.5) 1/ﬁ —f(z,v) -npr = —f(z,u)-npr onT .
Onr

Here f,, denotes differentiation of f(z,-) with respect to its second argument. Notice
that T';,, itself depends on the solution u.

The coupled problem (5.2)-(5.5) can be advanced in time either by an implicit
or by an explicit method. For the sake of exposition, let us consider the first order
Euler method. Denoting by t* and t¥+1 = t¥ 4 At two subsequent time-levels, and

by ¢* the value of any function ¢ at the time level ¥, the ezplicit method transform
(5.2)-(5.3) into:

uktl gk . .
(5.6) — + div[f(z,u”)] + r(z,u") =0 ,z €
ok _ ok
(6.1 —xy div(vVo*) + div[f(z,v*)] + r{z,v*) =0 ,z€Q, ,

while interface conditions need to be fulfilled at the new time-level #*+1 and read:

(5.8)  f(z,u**).nr = f(z,v*")-nr on Tk, = {z € T'|f,(z,u*) - nr <0}
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avk+1
3np

Thus (5.6) and (5.7) can be advanced first at all internal points of Q; and €,
respectively, then at each grid point on I’ a non-linear algebraic equation remains
to be solved. (Equation (5.8) oughts to be enforced on I'¥}!, which for the sake of
simplicity is approximated by T¥)).

Using instead the implicit method would lead to the equations:

(5.9) v

— f(z,v**") - np = ~f(z,u**) . np onT .

uktl — ok . E+1 k41
(5.10) — + div[f(z,u" )]+ r(z,u* ) =0 ,z €
okl _ ok - .
(5.11) —x div(vVo* ) + div[f(z, v* )] + r(2, 0" =0 ,z€Q, ,

still supplemented with the interface conditions (5.8), (5.9).

A possible drawback intrinsic with the approach (5.2)-(5.5) is that the reduced
equation (5.2) might exhibit discontinuous solutions in €;, whereas the original
problem doesn’t. The alternative approach is to resort to a reduced problem only
after linearizing (in some way) the original equation in the whole domain. The
linearization procedure yields at the time-level #**! a linear convection-diffusion
equation (plus a reaction term) to which the sound theory of Sect. 2 can be applied
straightforwardly.

A first example of linearization is provided by any suitable semi-implicit time
marching scheme for (5.1). For the sake of clarity, let us consider a very simple first
order one, that reads as:

k+1 _ k
O O div(yVuwrt) + £, (z, wF) - Vot = —RFFHL £ >0,

(5.12) =

The term R¥¥+!(w) accounts for the reaction term r(z,w) as well as for 3; g—%.
The interface treatment for (5.12) is not influenced by the nature of the zero order
term R¥¥+1. We therefore don’t mind whether this term has been dealt with
explicitly, implicitly or else semi-implicitly.

The left hand side of equation (5.12) fits into the general form of the linear,
steady equation (5.9). A coupled approach is therefore in order, and the reduced
problem reads as follows (with obvious notations):

(5.13) £,(z, u¥) - Vbt + SEFH1(4) =0 in Oy

(5.14) —div(yVortY) + £, (2, 0F) - Vbl 4 §hkt1(5) =0 in Q,

with the linear interface conditions

(5.15) £,(z,u*) - npu*+! = £,(z,v*) - oo™+ on |
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+1
(5.16) Va;n — fw(x,vk) -npoFtt = —fw(:t;,u") -nruft! onT .
r .

The solution algorithm of Sect. 3 applies straightforwardly, as well as the conver-
gence theory that we have carried out on the linear problem.
Another linearization procedure can be accomplished as follows. We start with
a fully implicit scheme to advance (5.1) from t* to t*+1, then the resulting equation
is linearized by a Newton method. If we start with the Euler method, this process
yields '
F'(Wp)(Wpt1 — W)= —-F(W,) , p21,

with Wy = w¥ and lim,W, = w¥+!, where

z—wk

F(z):= 7

— div(vVz) + div[f(z, 2)] + r(z, 2)

and F'(W,) denotes the Jacobian of F computed at the point W,.

Each Newton iterate yields therefore a problem that can still be cast under the
general form (2.9), thus the reduced approch (2.10), (2.11) with (2.4)-(2.8) applies
straightforwardly.

From the computational viewpoint, in several circumstances the fully explicit
method (5.6)-(5.9) is the cheapest one. The semi-implicit method (5.13)-(5.16) is
however a viable alternative, that moreover lies on solid mathematical background.

A numerical simulation for a problem like (5.1) in a two-dimensional domain,
based on the semi-implicit (coupled) procedure (5.13)-(5.16), is presented in [FPQ].
Here we show another application to the one-dimensional Burgers problem:

W — VW +ww, =0 , —1<z<l , t>0
w(z,0) = arctg[b(z - 09)] , -1<z<1
w(1,t) = (1 + t)arctg(0.5) , t>0

w,(0,8) =0 , t>0 .

(5.17)

At each t > 0 the space interval is partitioned into Q; = (~1,a), Q; = (e, 1), and
the space discretization is accomplished through a spectral collocation method using
N nodes in either domain. We compute at time ¢ = 10 the solution wy obtained
solving in both domains the viscous Burgers equation (5.17), and with wy the one
achieved by coupling the viscous equation in 2, with the reduced inviscid equation
in ;. We have chosen N = 45 and the interface « is set to 0.7. Notice that for all
time 0 <t <10, z = 0.7 is an inflow boundary for the subdomain §;.

We report in Fig. 13 the logarithm of the absolute value of the difference
between wy and w} correspondingly to the explicit time-stepping (5.6)-(5.9), with
At = 107° and two values of v. For both cases, the difference is at most equal to ».
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Concerning stability, no theoretical analysis is available, though a more strin-
gent time-step restriction is expected for the fully explicit method. We illustrate
this fact on the problem at hand, by showing in Tab. 14 for several values of N and
v the ratio Ka; between At,;, the allowable At for the semi-implicit method, and
At,z, the one for the explicit method (the latter being dictated by the CFL condi-
tion). Correspondingly, we also report K¢py, the ratio between the CPU-time (on
the CRAY 2) of the explicit method (with At,;) and that of the semi-implicit one
(with At,;) for a simulation along the time interval 0 < ¢ < 10.

Ka¢ Kcpu
v 0.005 0.001 0.0005 0.005 0.001 0.0005
N
60 > 28000 814 277 179.1 30.3 10.5
70 > 56000 1314 571 299.5 57.0 26.7
80 > 110000 3200 1086 468.6 121.1 41.3

Tab. 14. The values of Kpy=Aty;/Ate, and Kopy=(CPU-time), /(CPU-time),;.

6. Other applications

Computational aerodynamics is a field that may strongly benefit from a het-
erogeneous domain decomposition approach. A typical instance is represented by

flow simulation around an airfoil or else over a flat plate.
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In both cases, the full Navier-Stokes equations need to be solved in a vicinity
of the body (including the wake region). However, sufficiently far from the body
the flow motion can be modeled by the inviscid Euler equations, or else (whenever
the flow is vorticity free), by the full potential equation for the velocity potential.
The first approach is pursued in [CQV2], the latter in [GPT].

The coupling of the different set of equations can be accomplished either di-
rectly on the original non-linear problem, or else on suitable subproblems. The
latter can be obtained, e.g., by the effect of Newton-like linearization procedures
on the global non-linear (steady) problem and/or by operator splitting techniques
(e-g., [CQV2]), or else by advancing in time by semi-implicit methods ([CQV1]).
In all such cases, one resort to convection-diffusion problems like (5.1) (discretized
in time) or (5.12), and/or to a generalized form of the Stokes problem (see [BGP],
[CQV2]). It is precisely on these subproblems that a coupling procedure can be
accomplished (besides the preceding references, see, e.g., [QSV], [CZ]).

We conclude mentioning a different kind of problem, the one of wave propaga-
tion in heterogeneous media (e.g., [DL]), whose mathematical description is provided
by the Maxwell equations. If the electric conductivity can be assumed to vanish
upon one of the media, we are left with the problem of coupling different kind of
equations through an interface that represents now the physical separation between
the media. This problem, which is faced in [QV2], has a straightforward solution in
a two-dimensional case, while a sound treatment is requested in three dimensions
(for the case of strictly positive conductivity, see, e.g., [KN]).
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