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Hybrid Spectral Element Methods for Flows Over
Rough Walls
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Ahbstract. In this paper we present a new formulation for coupling speciral element discretizations
to finite-difference and finite-element discretizations addressing flow problems in very complicated ge-
ometries. A general iterative relaxation procedure is employed that enforces ¢! continuity along the
paiching interface between the two differently discretised subdomains. In fluid flow simulations of tran-
sitional and turbulent flows the high-order discretisation (spectral element) is used in the outer part of
the domain where the Reynolds number is effectively very high. Near *rough” wall boundaries (wherse
the flow is effectively very viscous) the use of low-order discretisations provides sufficient accuracy and
allows for efficient treatment of the complex geometry. An analysis of the patching procedure is pre-
sented for elliptic problems and extensions to incompressible Navier-Stokes equation are implemented
using a high-order splitting scheme. Several examples are given for model problems and performance
is measured on both serial and parallel processors.

1. Introduction. Over the last two decades, a large number of numerical tech-
niques have been proposed for the solution of the incompressible Navier-Stokes equa-
tions. Although the differences among these discretization techniques might have ini-
tially been very clear, there has been an increasing trend (especially this past dacade)
towards construction of hybrid algorithms with components that exhibit different prop-
erties but typically share a common root. A typical example of such a confluence of
numerical algorithms is the spectral element method [7], [4] which is based on two
weighted-residual techniques: finite element and spectral methods. The combination of
spectral-like accuracy with the flexibility in handling complex geometries have made the
method quite succesfull in a number of applications in fluid dynamics, incia%ing‘ﬂowa
in the transitional and turbulent regimes [3]. However, a straightforward application of
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the method in simulating turbulent flows with a very strong disparity in length scales
(e.g. fluid flows over arbitrarily roughened surfaces) is prohibitively expensive as the
small-scale geometric irregularity imposes severe constraints that result in an extremely
low convergence rate for the method.

In this work, we propose a new class of efficient hybrid discretization schemes ap-
propriate for simulating flows over walls of arbitrary roughness (see figure 1.1). The two
main components of the algorithm are a high-order scheme (spectral element method)
and a low-order scheme (finite-difference or finite-element method). The use of the
finite-difference discretization is essential in geometries with random boundaries, where
all discretization techniques based on mappings fail. The use of low-order finite ele-
ments can also be useful in a wider class of applications incuding, for example, flows
in unbounded domains, flows over surfaces with distrubuded roughness elements, etc.
A new general iterative relaxation procedure is applied to allow coupling of two fun-
damentally different discretizations. In particular, the first component of the hybrid
algorithm (spectral element method) is applied to the outer large-scale domain (,
where the effective local Reynolds number is large and thus the spectral-like dispersive
properties of the method are effectively utilized. In the near-wall region where an al-
most laminar flow prevails the second component (a low-order finite difference method)
is applied providing sufficicient resolution to simulate the viscous flow and account for
the small-scale irregularity of the domain ;. As regards time discretization, a high-
order splitting scheme [5] is employed that reduces the problem into solving a series of
coupled hyperbolic and elliptic problems. Continuity of the solution along the spectral
element-finite difference interface (boundary I in figure 1.1) is then imposed by requir-
ing continuity of the elliptic components; the latter is accomplished using the iterative
“Zanolli” patching procedure and appropriately chosen relaxation parameters [1].
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F1a. 1.1. Geomeiry definition and computational subdomains for the model flow problem.
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The “Zanolli” patching procedure has been practiced in the past only in the context
of similar discretizations on both domains (i.e. spectral collocation, [1]). It basically
consists of solving a Dirichlet elliptic problem in domain £, and subsequently providing
a pointwise flux (Neumann) condition for the solution of the corresponding elliptic
problem in domain ,; this procedure is then repeated until continuity of the two
solutions at the interface is achieved. Convergence to the exact solution is typically
obtained after three to five iterations depending on the problem size and the value of the
relaxation parameter. In the current work, we have modified this patching procedure to
first accomodate dissimilar discretization schemes across the two domains, and second
to allow for a parallel implementation; the latter can be achieved by appropriately
modifying the flux condition of the Neumann elliptic problem.

The paper is organized as follows: In section 2, we present the patching algorithm
in its sequential form and subsequently introduce modifications that allow parallel im-
plementation. Convergenece error analysis and numerical tests are presented for mixed
spectral element /finite-difference discretizations of elliptic problems. In section 3, we
extend the algorithm to the incompressible Navier-Stokes equations by employing a
recently proposed high-order splitting scheme, We then apply the hybrid scheme to
non-conforming spectral element simulation of an exact Navier-Stokes solution where
the spectral (exponential) convergence is verified; subsequently a time-dependent flow
example is simulated in an irregular domain. A brief discussion and conclusions are
summarized in section 4.

2. Iterative Patching Procedure. Here we consider techniques for solving a
general second-order elliptic partial differential equation where the gobal domain  is
subdivided into a number of smaller, non-overlapping domains Q;. The emphasis is on
generality in the discretizations within each subdomain and the ability, in the context
of parallel computers, to update each subdomain simultaneously. Although for “con-
forming” discretizations (i.e. the same discrete representation of the solution in each
subdomain) direct methods are still possible, in the case of fundamentally different dis-
cretizations we are forced to consider iterative procedures. One such method is that
proposed in [1] and referred to here as “Zanolli” patching. The method consists o{ so%v-
ing a sequence of alternating Dirchlet/Neumann problems, maintaining C? continuity
and relaxing interface values to achieve C° continuity to within some pre-defined tol-
erance. As shown in [1], this procedure results in very fast convergence for the case of
spectral collocation within subdomains. Here, it will be shown to perfcrm'efluaﬁy well
for mixed discretizations (spectral/finite difference). Also, because the original proce-
dure is inherently serial , modifications to allow for parallel execution of the algorithm

will be examined.
2.1. Sequential Algorithm. Consider the solution of the Helmholtz equation in
one dimension, given by:
Pew — 24 = f (3)

@1) #a) =0
#(t) =0
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The global domain (a,b) is now subdivided into two domains, Q,(a,§) and Q;(4,b)
where § is the location of the interface or “patch”. The Zanolli patching procedure is
applied as follows: we look for a sequence of functions ¢7 € @, and ¢3 € Q. which
satisfy the following:

¢?,zz - ”’2¢? = f in Ql
(2.2) n(a) =0
$1(8) =an
¢'2‘,:r:n - ”2¢? = f in 92
(2.3) 2() =0
$3.(8) = $7.(6)

where n denotes the iteration, A! is a given real number, and subsequent A™’s are
computed as:

(2.4) AMH = 9. g2(8) + (1 —8) - A

In this context, 8 is a relazation parameter which under certain conditions guarantees
that the procedure (2.2) - (2.3) will always converge. The extension to two-dimensional
problems is straightforward, with A™ being replaced by A"(s) (s denotes a local co-
ordinate system along the patch) and the Neumann condition (2.3) replaced by an
equivalent normal flux balance.

One of the important results of [1] is a theoretical prediction of optimal #'s and
a method for choosing 6 dynamically so as to accelerate convergence. Defining error
functions

ef =47 — ¢
(2:5) € =¢3—¢37"
#(6) =0-¢3+(1-6)-47 onT
where I is the line seperating the two patched regions (refer to figure 1.1). The unique
real number § which minimizes [|z*(8) — 2"~1(8)||? is given by:

Tt 1.3 1
2.6 o = (e3,€7 —€3)
®9 et — 1"
where (-,-) is the normal inner product in £2 and || - || is the associated norm.

Several examples of the performance of this algorithm for spectral collocation are
given in [1], and for 1-D spectral-finite difference discretizations in [2]. Here we demon-
strate its effectiveness for 2-D problems with non-conforming discretizations by solving
the Helmholtz equation in a complex domain (see figure 2.1). The global domain is sub-
divided into two approximately equally sized subdomains and discretized using spectral
elements in ; and finite differences in ;. In figure 2.2 we show convergence of the
solution at the interface for several values of 8, including the case where 8 is updated dy-
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namically. The performance seen here is typical, namely 5-10 iterations for convergence
independent of the complexity of the the solution.

Fie. 2.1. Simulated pressure distribution over a rough wall. The lower reciangle represents i'he
boundary of the finite difference grid while the two upper rectangles are speciral elements. The patching
procedure resulis in a smooth and continsous pressure disiribution across the interface between the two
domains.

2.2. Parallel Algorithm. One of the drawbacks to the Zanolli procedure is that
it is a “serial algorithm”. Because of the coupling (through the derivative term) between
(2:2) and (2.3) the solution on each subdomain must be computed in sequence, limiting
the application of this procedure to sequential processing. A simple modification to
(2:2) - (2.3) which allows the computations to proceed in parallel is:

¢p(8) =0-¢57(8)+(1—6)-477(8)
1. Set {

$3.(8) =452'(9)
2.7 .
45?,22 - I“‘zqsl =f in
2. Solve {

P e — 247 = f in Qg

Note that 1. denotes a communication and 2. a calculation step. While alte.ring the
convergence properties of the original scheme, this allows fo‘r each subdomain e;; ;c
updated simultaneousely. On a medium- to fine-grained machine, it also aﬂews‘ o
to be distributed over an appropriate collection of processors such that domains wi

£, - I
differing workloads may be updated in the same amount of real” time. )
Convergence of the procedure (2.7) is analyzed in [2] and on}y M 2;2
Figure 2.3 shows convergence rates for a typical 2-D configuration for var
rates for the parallel procedure.

values of 4, and figure 2.4 shows the correspondi
Note that in the unrelaxed case (ﬂ = 1) the paraﬂel Pmcedm PI‘O&“C&“ two *mcouf"led
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Fi1e. 2.2. Interface convergence for speciral elemeni-finiie difference paicking. 6 refers to the
relazation paremeter applied to funciion values along the interface.

solutions which converge at half the rate of the serial version. However, a value of
0 exists which yields acceptable convergence at better than half the serial rate. This
result suggests that the amount of work represented by individual subdomains should
be significant for the parallel procedure to be efficient. For efficiency measurements on
typical 2-D cases the reader is referred to [2].

3. Navier-Stokes Algorithm.

3.1. High-Order Splitting Scheme. In this section, we extend the iterative
patching procedure to the incompressible Navier-Stokes equations for simulations of
flows in arbitrarily complex domains. The governing equations for Newtonian fluids
are:

) V-v=0 in Q

where v(x,t) is the velocity field, p is the static pressure, R is the Reynolds number, p
is the density and D denotes total derivative.

Numerical solution of the above system of equations will be obtained in the domains
§2; and ), shown in figure 1.1. Having defined the computational domain } we now
proceed with the discretization of the system (3.1). The time-discretization employs 2
high-order splitting algorithm based on mixed stiffly stable schemes [5]. Considering
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F1G. 2.4. Spectral element-finite difference convergence for the modified (parallel) Zanolli algorithm.
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first the nonlinear terms we obtain,

v — ZJ;I o, v J-1 —
(32) e — =~ Y A N(™)

q=0

where N(v*) = 3[v®- Vv" + V - (v* - v*)] represents the nonlinear contributions writ-
ten in skew-symmetric form at time level ¢ = nAt, and a,,f, are implicit/explicit
weight-coefficients for the stiffly stable scheme of order J (see [5]). The next substep
incorporates the pressure equation and enforces the incompressibility constraint as fol-
lows,

§—v = —At Vprt!
3.3 v=-y 4
(3.3) V-v =0

Finally, the last substep includes the viscous corrections and the imposition of the
boundary conditions, i.e.

‘)’oV"'H —-V
At

where -, is a weight-coefficient of the backwards differentiation scheme employed {5}.
The above time-treatment of the system of equations (3.1) results in a very efficient
calculation procedure as it decouples the pressure and velocity equations as in (3.3) and
(3.4). As regards time-accuracy of this splitting scheme a key element in this approach
is the specific treatment of the pressure equation (3.3), which can be recast in the form

(3 4) — R—l V2Vﬁ+1

3.5 2n+1= __‘z_
(3-5) Vip V(g

along with the consistent high-order pressure boundary condition (see [5])

apn'l-l J-1 J-1
(3.6) G =0 [F X BNGT) - B Y BV x (V x v
. g=0 g=0

where n denotes the unit normal to the boundary Q. Equations (3.3) and (3.5) there-
fore are Poisson equations with constant coefficients; the pressure equation, for example,
can be rewritten in the standard form

CX9) Vi = g(x)

where we have defined ¢ = ™, and g(x) = V - (). Standard spectral element
and finite difference discretizations can then be appﬁeg_in the two subdomains {1y and
Q;, while the Zanolli patching procedure is employed for both the pressure and the
viscous correction terms. In this formulation (where the nonlinear terms are consid-
ered explicitly in time) the algorithms developed in the previous section are directly
applicable,
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Fic. 3.1. Streamlines and non-conforming speciral elemeni mesh for the Kovasnay flow problem.

3.2. Non-Conforming Spectral Elements. We now consider the solution to
(3.1) where the domain § is subdivided into two domains ; and 2, and spectral
element discretizations applied in both. By applying the Zanolli patching procedure, we
can relax the usual constraint of physically coincident collocation points along elemental
boundaries and consider both non-conforming elements and polynomial expansions in
the regions ; and ;. As a test case we will solve the flow problem proposed by
Kovasnay [6] where the solution is given by:

1
(3.8) . u=1—ecos2ny, v= %e” sin 27y, p= 5(1 — )

where A = R/2 — \/R—z/mg. This solution is shown in the form of streamlines
in figure 3.1 and may represent steady, low-Reynolds number flow in the wake of a
row of cylinders. The solution domain Q@ = [~1/2,1] x [~1/2,3/2] is subdivided into
Q= [-1/2,1] x [1/2,3/2] and Q, = [-1/2,1] x [-1/2,1/2]. Within these subdomains
we further subdivide the solution space into a number of spectral elements; a typical
grid is shown in figure 3.1. In figure 3.2 we see that as the polynomial order N is
increased simultaneously in ©; and Q; this nested decomposition results in ezponential
convergence both on and away from the patched interface. This convergence is critical
in the case of high-order schemes as it justifies the additional work usually associated
with them. Even in the case of dissimilar polynomial expansions in the two subdomains
we still obtain excellent results, as shown in figure 3.3 for the particular case Ny = 9
and No=1T.

To address the issue of computational efficiency for time-dependent calculations, we
simulate unsteady flow past a square cylinder in a channel with a rough Wal.l. The‘ com-
putational grid is shown in figure 3.4; the boundary conditions are periodicity at inflow
and outflow and no-slip along the upper and lower walls. A relatively small number -of
high-order spectral elements has been used to decompose the regular domain 'ﬂl while
a larger number of low-order finite elements have been used to represent the irregular
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F1G6. 3.2. Convergence for the Kovasnay flow problem. As the polynomial order of the ezpansion
within domains Q; and Q3 is increased, we obtain ezponential convergence both on and away from the
patched interface.

domain ;. Again, this emphasizes the generality of the Zanolli patching procedure in
resolving the two solutions. In figure 3.5 we compare fixed versus dynamic relaxation
for the streamwise velocity calculations. Clearly, the fixed relaxation is inappropriate
in this case but dynamic relaxation yields convergence to the tolerance of 10~2 in only
5 iterations per time step. A plot of streamwise velocity contours at a simulation time
of ¢ = 153.2 is shown in figure 3.6.

4. Discussion. We have presented a general procedure for solving elliptic prob-
lems on irregular domains using an iterative patching algorithm which allows for the cou-
pling of fundamentally different discretization techniques. In particular, hybrid schemes
which combine high-order spectral elements, finite elements, and finite difference dis-
cretizations have been formulated. Results for the Helmholtz equation were presented
and performance of both serial and parallel implementations were discussed. Exten-
sion to the Navier-Stokes equations showed these results to carry through to complex
numerical simulations including unsteady fluid flows.

Currently, we are working on fully parallel implementations of these algorithms
as well as extending these hybrid schemes to address the issues of local refinement
and composite grids, adaptive gridding, and three-dimensional flows over surfaces of
arbitrary (random) roughness.
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Kovasnay Solution
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Fi1G. 3.3. Profiles of the sireamuwise velocily component at locations z = —0.25 (4) and z =
0.50 (B) for the Kovasnay problem.
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