CHAPTER 10

Iterative Methods by SPD and Small Subspace Solvers
for Nonsymmetric or Indefinite Problems

Jinchao Xu*

Abstract. This paper is devoted to a class of iterative methods for solving nonsymmetric or
indefinite problems that are dominated by some SPD (symmetric positive definite) problems. The
algorithm is based on a direct solver for the original equation restricted on a small subspace and a
given iterative method for the SPD equation. It is shown that any convergent iterative method for
the SPD problem will give rise to an algorithm that converges with a comparable rate if the small
subspace is properly chosen. Furthermore a number of preconditioners that can be used with GMRES
type methods are also obtained.

1. Introduction. In this paper, we shall study a class of iterative methods for
solving nonsymmetric or indefinite equations that are governed by some SPD systems.
Straight iterative schemes as well as preconditioning techniques will be discussed.

This paper is based on some early work by Xu and Cai [12] and Xu [10]. In
[12], a class of preconditioners are presented for GMRES type algorithms and in {10]
a class of linear iterative methods are developed. The algorithms in both [12] and
[10] are built upon a small subspace solver and a given iterative method for the SPD
operator that governs the equation, but the techniques used in these two papers are
quite different. In this paper, we shall give a unified treatment for these algorithms,
present some improved estimates and also propose some new preconditioners. We
would like to mention that certain modifications for the algorithms in [10] have been
made by Bramble, Leyk and Pasciak [1].

2. Preliminaries. We assume that V is a given linear vector space V equipped
with an inner product (-,-). Let L(V) denote the space of all linear operators from V
to itself. We are interested in solving the equation

(2.1) Au=f,

for a given f € V. Here A € L(V) is a given invertible operator satisfying

A= A+N,
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ITERATIVE METHODS BY SPD 107

and A € L(V) is SPD in the sense that
(Au,v) = (u, Av) Vu,v €V and (Av,v)>0 if v#0;

the perturbation operator N € L(V) is not SPD in general.
As Ais SPD, (+,-)4 = (A+,-) defines an inner product on ¥ and induces a norm
on V, denoted by || - [{4. Given G € L(V), we define its A-norm by

|Gl a
Gllg = su .
IGlla = =20 "o,

The construction of an iterative algorithm for (2.1) often amounts to the construc-
tion of a B € L(V) which behaves like A~1. One approach is to use B to obtain a
linear iterative scheme as follows

22) a2 b 4 BT - )

for k = 0,1,2,-+-, and any u® € V. Obvioulsly a sufficient condition for the conver-
gence of scheme (2.2) is

n= HI——BA”A <1,
and in this case
llu — w¥|la < 7¥ljulla

Another approach is to use B as a preconditioner for (2.1) in conjunction with
GMRES type methods (c.f. [6], [7]). Unlike the conjugate gradient method for SPD
problem, the GMRES method may not be convergent without proper preconditioning,.
A preconditioner for the GMRES method is not only to speed up the convergence but
more importantly to guarantee the convergence as well. More precisely, if there are
two constants ag, oy > 0 such that

(BAv,v)4 > ao(v,v)a, [|BAv]ja < ayljofla, YoeV,
then, the GMRES method applying to the preconditioned system
BAu=Bf
with the inner product (-,-), converges at the rate 1 — o2/a? (cf. [6]).

Now we assume that a subspace Vo C V is given, we define an operator Ag: Vo
Vs, and three projections Qg, Py, Po : V + Vy by, for all ug, v € Wy,

(Aouo, vo) = (Aug,vo),
and for all w € V, v € Vo
(APyu, v0) = (Au,w), (APou,vg) = (Au,v0)s  (Qou,e) = (2, 7).

It is clear that Aq, Py and Qo are well defined. We shall assume that Ag is invertible,
which implies that f is also well-defined.
By the definitions of Fy, Ag and @y,

44(3130 = ngi
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It follows that, for a given f € V,
2o = Ag'Qof if and only if (Ao, v0) = (f, ), Voo € Vb

Many estimates in this paper will be established in terms of the following param-
eter

(N(I - Po)u,v)
2.3 g = sup ——o—2 27
(2.3) 0 ey Tullaliolia

The assumption that we shall make late is that 6y can be sufficiently small if the
subspace V; is properly chosen.
In the study of preconditioners, we need to use another parameter defined by

7 (Nu’ v)
2.4 6= sup ——0n->~—,
(24) o Tullalola

It is easy to see that
25) 1A= N||4 < &,

Observe that § = 6 if Vo = {0}. Without loss of generality, we assume that § < 8.
LeEMMA 2.1. ForanyueV

(2:6) I(Po ~ Poyulla < Sollulla, llu— Poulla < (1 + So)fulla.

Proof. 1t follows from the definitions of Py and Py that
(A(Po — Po)u,vp) = (N(I — Po)u, v9), Yu €V, € Vo,

which, with v = (130 — Pp)u, implies the first inequality in (2.6). The second estimate
obviously follows from the first one. 0O

3. Basic algorithms. In this section, a class of linear iterative methods and
preconditioners will be presented in a unified framework.

. 8.1. Linear iterative algorithms. We now present the main algorithm pro-
posed in Xu [10]. The algorithm depends on a given solver, represented by a B ¢ vy,
for A satisfying

I - BA||4 < 1.

AvrcoriTEM 3.1. Given u® € V. Assume u* is defined for k > 0, then
1. Solve (ezactly) the equation on Vy:

Ao’&g = Qo(f - fiuk)
2 Setg=f— A(u"‘—}-ﬁg), fori=0,1,---,pand v =0
vl = of 4 B(g - Av'),

3. uwFtl = u¥ 4 g+ vP.
Like in the classic multigrid method, the first step of the above algorithm plays the
role of correction on the small subspace Vo; the second step plays the role of smoothing
{(by the SPD operator A).
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Let us derive the error equation of the above algorithm. Without loss of generality,
we assume that p = 1. Note that f = Au, it follows that

o = Po(u—u*) and o' = BA(I - By)(u— uF).
Thus
w—uFt! = (I = BAYI — By)(u—u*).
Obviously the Algorithm 3.1 is identical to (2.2) if B satisfies
(3.1) I-BA=(I-BA{I-B).

THEOREM 3.2. Assume that B is given by (3.1), then

M- BAlla <,
where
(3.2) n=p"+3%, p=|I—-BAla
Consequently

lfw — w¥{la < (0P + 360)"l1u — wla,

where u* are defined by Algorithm 3.1 and u is the solution of (2.1). Therefore the
Algorithm 8.1 is convergent if & is sufficiently small so that 36 < 1 — p.

Proof. Without loss of generality, we assume that p = 1. Given u € V, denote
o = Pou,v = A~ YA(u — ug) and w = u — up. We shall first show that

(3.3) llw—vlla < dollulla, [lvlla < (1+ 260)llulla-
In fact

lw—ol% = (A(w=v),w—v)=((A~A)(s~1),w-0)
= —(N(u-uo),w—v) < bojullallw — v]l.

The first estimate in (3.3) then follows. To see the second estimate in (3.3), by
LemMA 2.3

lIvll% (Av,) = (A(u - ug),v) = (A — 10),v) + (N (u — w0), v)

< (1 +8o)llullalivlla + bollullallolla < (1 + 260)lullallolla-
Therefore (3.3) is justified.
Thanks to (3.3), the rest of the proof is easy:
(I = BAYI - Po)ul|a = |lw — B(Av)|la
< lw—vlla+ llo — B(Av)lla < dollulla + pllvlla
< (8o + p(1+ 280)) flulla < (p+ 380) [lulla

as desired. O

3.2. Preconditioners for GMRES type methods. Based on the theory just
developed, a number of preconditioners can be derived in a straightforward fashion.
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In particular the preconditioners presented in Xu and Cai [12] can be obtained easily
with weaker assumptions.

First, as a direct consequence of Theorem 2.1, we have

THEOREM 3.3.

(3.4) B =(I-BA)A7 Q.+ B,

Then, for allve V
(BAv, )42 (1—n)(v,0)a, |BAolla < (1+n)llolla.

The proof of the above theorem is straightforward and hence omitted.
We shall now derive the theory developed in [12].
THEOREM 3.4. Let

(3.5) B =wA;'Qo+ B.
Then, for n given by (3.2) and for allv € V

P 1 P -
(3.6) (BAv,0)a 2 5(1=n)(v,v)a, [BAvlla < (0 +2)(1+O)|v]la,
provided that w is sufficiently large and & is sufficiently small, e.g.

- _
w> LF20)° sl L1-m
1-7 4w+ 1+26

3.7

Proof. Obviously

BA = why+BA=(w- 1+ BA)Py + Py + BA(I - By)
= (W=1+BA)R +(w -1+ BA) (R~ Po) + By + BA(I - By)
By (2.5) and the fact that ||I — BA||4 < 1, it is easy to show that
M- BAjla<1+25
Hence, by (2.6)
((w =14+ BAY Py~ Poyo,0)4 < (w+1+ 26)b0||v][%.
An application of Cauchy-Schwarz inequality gives
R - 1 _ -

(= B4R, 014 U= Al Povlallolla < 171+ 28 ool + -2 T

Combining the above two estimates with Theorem 3.3 yields
o 1+ 28)? 3(1- z
Bdv,o)a2 (o= T yypps 4 O 250 lol

The first estimate in (8.6) then follows if (3.7) holds. The rest of the proof is straigt-
forward. O



ITERATIVE METHODS BY SPD 111

We are now in a position to derive the main result in [12].
TEEOREM 3.5. Assume that B is a SPD preconditioner for A and

(3.8) B =wA;'Q. + B.
Then, for allveV
. Xo+ A1, 2 . Ao+ A
(BAv,v)a > 22F 2 200 _g5)4(0,0), [BAvlla < (0 +2)(1 4522 2ol
4 A1+ Ao 2

provided that w is sufficiently large and &g is sufficiently small. Here

Ao = Amin(BA), A = Amax(BA).

Proof. Let B = Xo—-?-TIB' Then

A — Ao
< 1.
AL+ Ao

The desired result can be derived from Theorem 3.4. O

p=Il - BAlla<

4. Subspace correction method. The algorithm we have studied above are
based on a given iterative algorithm for the SPD problem. In this section, we shall
discuss a special class of iterative methods for SPD problem and discuss the corre-
sponding Algorithm 3.1 and its modification.

4.1. Subspace correction method for the SPD problem. Following the
theory in Xu [9], many linear iterative methods for SPD problems can be formulated
by space decomposition and subspace corrections. We shall now give a brief review of

this theory.
The main ingredient of the theory is a decomposition of V that consists of a
number of subspaces V; C V, (0 < i < J) such that

(4.1) V= iv,-.

This means that, for each v € V, there exist v; € V; (0 < i < J), such that

This representation of v may not be unique in general.
For each i, define @; : V— V; and 4; : V; > V; by

(Qin,v) = (w,:), we€V,w€Vi, (Aiui,u)=(Aui,vi), ui,v € Vi

Note that A; is SPD. The algorithm for the SPD system for A will be designed
based on given algorithms for solving the subspace equations Aiu; = fi for f; € V;.
Again these algorithms ate characterized by some SPD operators, denoted by R;.

ALGORITEM 4.1. Preconditioner for A:

J
(4.2) B =) RQ:.

=0
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ALGORITEM 4.2. Given v° € V. Assume that v* € V is obtained. Then v*+! is
defined by

FHEHD/THY) o b H/TH) | R Aokl IH)
fori=0,1,-.- J.
Denote T; = R;Q;A. A direct manipulation gives that
v—v" = (I - BA)(v — oF),
where
(43) I—BA=(I=Ty\I-Ty1)- (I~ T)(I - To).

The theory for the above algorithms depends on two parameters, Ko and Kj,
defined as follows: for any v € V, there exists a decomposition v = S v forv; € V;
such that

J
D (B v, v) < Ko(Av,v);

i=0

and for any § C {0,1,2,---J} x {0,1,2,---J} and ui,; € V (0< i < J)

7 i 3
Y (T, Tjv)a < Ky (E(Twi,ui)A) (Z(ijj,vj)A) :

(i,j)es =0 =0
THEOREM 4.3. For the preconditioner given by (4.2),
Amin(BA) > K5',  Amax(BA) < Ky, k(BA) < KoK;.
The Algorithm 4.2 converges if wy = max; Amax(Ri{li) < 2, and furthermore

2 — Wi
4.4 Ejfi <1 =2 .
( ) “ J"A = K0(1+_K1)2

The proof of the above theorem can be found in [9]. It has been shown in [9] that
the above theorem provides optimal estimates for a large class of iterative methods
including the classic multigrid methods, BPX multigrid preconditioner, additive and
multiplicative domain decomposition methods and hierarchical basis methods.

4.2. Subspace correction method for (2.1). Suppose that V, used in the
definition of Algorithm 3.1 coincides with that in the decomposition {4.1). Then, if
the Algorithm 3.1 is applied with Algorithm 4.2, the subspace problems on ¥, are
solved twice in each iteration, once for Ag and once for Ag. We shall remove the solver
for Ag from Algorithm 4.2 and modify the Algorithm 3.1 as follows:

ALGORITEM 4.4. Given u® € V. Assume that v* is defined for k > 1, then we
define w1 = §F 4 v where

aF = uk 4 AF1Qo(F - AuF)
and, fori=1,---,J,

’Ui — vi—l +R1Qz(g _ Av"“l)
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with g = f — A4* and v° = 0.
The error equation of the above algorithm is
u—uFt = (I - BAYI - Bo)(u— v*)
where
(4.5) I-BA=(I-T){I-"Ti) --(I-Th).

THEOREM 4.5. Assume thatw; < 2. Then the Algorithm 4.4 converges if bo, given
by (2.3), is sufficiently small. Furthermore the error operator E = (I — BA)(I — Pp)
satisfies

IlE)a<n
where
2 - Wy
4.6 =145 — ——mr—.
(16) e T R Ko

Proof. Obviously, for B defined by (4.3) with Ry = A
(4.7) I—-BA=(I-BAY(I - R).
A direct manipulation yields
(I - BAYI - By) = (I - BAYI - y)
+ (I-BA)(P, - Po)+(B—-B)N({I - B).
Thus
(I — BAYI - Poyulla < (I = BAYI - Po)ulla
+ (I = BA)(Po — Po)ulla+ |I(B — BYN(I - Po)ulla
= Lh+L+1s.
The estimate of [; is given by THEOREM 3.2
I < (p+ 3bo)llulla
where p =1 — ﬁ‘%—l—)—{by Theorem 4.3. By the assumption on B;, [ —Tifjla <1
which implies that ||[I — BA|j4 < 1. Hence, by (2.6)
I < ||(Po — Poyulla < bollulla-
Tt remains to estimate 3. We first note that, by (4.7), (B— B)A = (I — BA)P,. Thus
(B~ B)Alla = | - BA|allPoll < 1.

Let “¢” and “+” denote the tra.nspositibns with respect to the inner products (-,) and
(A-,-) respectively, then

(B — BY Alla = (B~ B)Al|la = (B~ B)Alla < 1.
Consequently

(B — B)N(I — Bo)uliy ((B ~ B)N(I - Po)yu, A(B — B)N(I — By)u)

Sollullall(B ~ BY'A(B - BYN(I - Po)ul|a
bollullall(B ~ B AlAl(B ~ BYN(I - Boyula
Sollullall(B — BYN(I — Po)ull4-

INIAIA T
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Hence
Iy = ||(B - BYN(I - Py)ul|4 < bollu]| -

The desired estimate then follows. 0O

4.3. Preconditioners. With the subspace correction methods for the SPD pro-
blem, we shall now disucss the corresponding preconditioners studied in Section 3.2.
THEOREM 4.6. For B given by (4.5), we have

(4.8) B =(I-BA)A;'Q. + B,
Then, for 1 given by (4.6) and for allv €Y

(BAv,0)a > (1 - 0)(v,0)a, [|BAv{ja < (14 n)lo]|a-

Because of Theorem 4.5, the proof of this theorem or the next one is identical to
that of Theorem 3.3 or Theorem 3.4.
THEOREM 4.7. For B given by (4.5), define

(4.9) B =wi;'Qo + B.
Then, for allveV

(Bdv,v)a > 5(1-mA®,0), [Bhslla < (@ +2)(1+8)lolla

provided that w is sufficiently large and 6y is sufficiently small.
Note preconditioner (4.9) may also be applied in the SPD case.
THEOREM 4.8.

J
(4.10) B=wiz'Qo+ ) RiQ:i.
i=1
Then, for allveV
dot 2o _
4 A+ Ao
provided that w is sufficiently large and 68y is sufficiently small.
Proof. Using the obvious identity

Ao+

(BAv,v)a > —460)(v,0)4, [|BAvlja < (w+2)(1+48) 5 llla,

E’A:Po—-Po—f—(w— 1)?0—]-31‘1,
the desired result then follows by (2.6) and Theorem 3.5. 0

5. Algorithms in terms of vector and matrices. In this subsection, we shall
represent some algorithms studied earlier in terms of vectors and matrices which are
more convenient to code. As an example, we shall only discuss the Algorithm 4.4. For
the derivation detail and the equivalence between these algorithms, we refer to Xu 9]
for a general technique.

Assume that {¢;}}; is a given basis of ¥ and {¢{}}, is a given basis of ¥

(0 £ 1< J). The stiffness matrices of operator A and A on these bases are given by

A= ((Adi,¢5) e R™™", A= ((Adi, ¢;)) € R™", A = ((Ag}, 4})) € R,
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The equation (2.1) is then equivalent to
(5.1) Az =b.

The relation between (2.1) and (5.1) is given by u = Y1, zi¢; and b; = (f, ;).
Since V) C V, there are tf-j € R such that

n
=Y thiel, 1<j<m.
=1

In this way, for each I, we get a matrix 77 = (t};) € R**™. Assume that R is a solver
for A; (for example, as the exact solver, R; = .Al"l), the Algorithm 4.4 can be written
in the following equivalent form.

ALGORITHM 5.1. Given z° € R™. Assume z* is defined for k > 0, then we define
P = gk 4 27 where

&* = o* 4+ To A5 TE(b — AzF)
and for i = 1,2,---,J,.
2=V L TRTHy — AFY),
where v = b — AzF,

6. Second order elliptic equations. In this section, we shall discuss some
applications of our algorithms to second order elliptic boundary value problems:

(6.1) { ﬁg

where Q is a bounded domain in R?, and £ = £ + N with

F in 9,
0 on 99

d
‘CU:—,JZ_IB (,J(:z:)a ) and NU = ;b(m)-é——t—c(x)ff

We assume all the coefficients are sufficiently smooth and the matrix (a;;(2)) is
symmetric and uniformly positive definite for any £ € £. We also assume that (6.1)
is uniquely solvable for any F € L%(Q).

Let H(Q) be the standard Sobolev space consisting of square integrable functions
with square integrable (weak) derivatives of first order and H}(Q) a subspace of H(2)
consisting of functions that vanish on 89 (in an appropriate sense). Then U € H}(£2)
is the solution of (6.1) if and only if

(6'2) A(U)X) = (F7X)1 Vx € HS(‘Q},
where

au 3)(

Aw,x) = jz%(x) +Zb(m> Cx+ea)lx ad (F9)= [ Fx

£,7=1

We first define the finite element approximation scheme. Assume that Q is a
polyhedral domain and that Q has been triangulated with @ = U;n;, where 7;’s are
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simplexes of size A with A € (0,1} and quasi-uniform. By this we mean that there
exist constants Cp and Cy not depending on h such that each simplex 7; is contained
in (contains) a ball of radius Cyh (respectively Coh). The finite element space V, is
defined to be the functions which are continuous on 2, piecewise linear with respect
to the triangulation {7;}, and vanish on 6.

In the sequel, we shall drop the subscript & and denote V = Vj,.

The finite element approximation to the solution of (6.2) is the function u € V
satisfying

{6.3) A(u,v) = (F,v), VoeV.

This equation is uniquely solvable if 4 is sufficiently small (cf. Schatz [8]).
Define A € L(V) by

(6.4) (Au,v) = A(u,v), u,v€ V.

The equation (6.3) is then equivalent to

(6.5) Au=f
with some f € V.
I we define
i (')x
avx= [ > a2 S5

t,7=1

an SPD operator 4 € L(V) can be defined similarly. Introducing the Galerkin projec-
tion Py, : HY(Q) v V defined by

A(Byv, ) = A(v,¢), Vv € HE(R),d€V.

Then u = B,U, where U and u are solutions of (6.3) and (6.3) respectively.
Following Schatz [8], there is a constant & € (0, 1] (depending on the regularity of
the adjoint equation of (6.1)) such that

(6.6) flo— P,,vny(m < Ch%fvllgqy, Vv € HY(RQ).

We shall take the space Vo = Vy,, the finite element space defined on a triangula-
tion with mesh size kg € (&, 1), which satisfies

Vig C Vh.

Correspondingly Py = Py, We assume that ho is sufficiently small so that Ag is
invertible and hence P, is well-defined. Applying {6.6) with % in place of h, we then
get by integration by parts

(N(I = Poyu,v) < CI(I - Po)ullaeyllolla < cohglulalivllas
and by Poincaréd’s inequality
(N, 9) < colfull allvlla,
Hence for § defined by (2.3) and § defined by (2.4),

o < cohd, &< e
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6.1. Domain decomposition methods. Assume that we are given a set of
overlapping subdomains {Q;}{_, of Q whose boundaries align with the mesh triangu-
lation defining V. One way of defining the subdomains and the associated partition
is by starting with disjoint open sets {Q?}L; with O = UL, Q9 and {Q9}L, quasi-
uniform of size hg. The subdomain €; is defined to be a mesh subdomain containing Q29
with the distance from 9Q; N to QY greater than or equal to chg for some prescribed
constant c.

Based on the subdomains given above, we can then define subspace V; (1 < ¢ < J)

by
Vi={veV:vfe)=0, forz e Q\Q}.

In addition, we introduce a coarse finite element subspace Vo C V defined from a
quasi-uniform triangulation of } of size hg. For the subspaces V; (0 < ¢ < J) defined
above, it can be shown that (4.1) holds. We assume the subspace solvers R; satisfy
the following property:

o(R;A;) C [wo,wn], 0<i<

for some positive constant wg. Furthermore we assume that wy and wy are bounded
below and above (by 2) respectively uniformly with respect to hg,h and J.

The corresponding Algorithms 4.1 and 4.2 are known as additive and multiplica-
tive Schwarz domain decomposition methods. It can be shown that (cf. [9])

KO S C’wgl,Kl S Cw1.

Consequently, for equation (6.1), we obtain two corresponding domain decompo-
sition algorithms: Algorithms 3.1 and 4.4; and six preconditioners: (3.4), (3.5), (3.8),
(4.8), (4.9) and (4.10). The corresponding estimates hold when kg is sufficiently small
(but independent of A).

In the domain decomposition context, we note that the preconditioner (4.10) was
studied by Cai and Widlund [5]; some numerical examples for (3.8) can be found in
Xu and Cai [12]; analysis and numerical experiment for (4.10) was done recently by
Cai [4].

Siinilar results obviously hold for other domain decomposition methods such as
substructuring methods.

6.2. Multigrid algorithms. To define a multigrid algorithm, we assume the
triangulation 7 is constructed by a successive refinement process. More precisely,
T = Tj for some J > 1 and Ty, for £ < J, are a nested sequence of quasi-uniform
triangulations which consist of simplexes 7% = {7} of size Ay for 1 < k < J such
that @ = U;r}, where the quasi-uniformity constants are independent of k. These
triangulations should be nested in the sense that any simplex 7}_, can be written
as a union of simplexes of {rf}. We further assume that there is a constant 7 >
1, independent of k, such that h; is proportional to 77 *. As an example, in two
dimensional case, a finer grid is obtained by connecting the midpoints of the edges of
the triangles of the coarser grid with Tg being the given coarsest initial quasi-uniform
triangulation.

Corresponding to each triangulation 7%, a finite element space Vi can be defined
by Vi = {v € HYQ) : v|, € Pi(7), V7 € T1}, where Py is the space of linear
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polynomials. Obviously
YoCWViC---CVy=V.

With the subspaces v; given above, (4.1) holds trivially.
H the subspace solvers R; are given by Gauss-Seidel or damped Jacobi iterations,
we have (cf. [9])

KOSC7 K <C, wi=L

Here C is a positive constant independent of h, ke and J. In this case, (4.2) is the
BPX preconditioner (cf. [3], [11]) and Algorithm 4.2 is equivalent to the classic (“slash
cycle”) multigrid method (cf. [2], [9]).

Consequently, we have all the corresponding Algorithms 3.1 and 4.4; and precon-
ditioners: (3.4), (3.5), (3.8), (4.8), (4.9) and (4.10); and the related estimates.

The discussion for the hierarchical basis method is similar.

References

[11 J. BRAMBLE, Z. LEYK, AND J. PascIaK, Iterative schemes for nonsymmetric
and indefinite elliptic bounday value problems, Preprint.

[2] J. BraMBLE, J. Pasciak, J. WanG, anD J. Xu, Convergence estimates
for multigrid algorithms without regularity assumptions, Math. Comp., 57
(1991), pp. 23-45.

[3] J. BRAMBLE, J. Pasciak, AND J. X, Parallel multilevel preconditioners, Math.
Comp., 55(1990), pp. 1-22.

[4] X. Ca1, An optimal two-level overlapping domain decomposition method for
elliptic problems in two and three dimensions, Research report 91-11, Dept.
of Math., University of Kentucky, December 1991.

[5] X.Ca1anp O. WiDLUND, Multiplicative Schwarz Algorithms for Some Nonsym-
metric and Indefinite Problems, Courant Institute of Mathematical Sciences,
Technical report.

[6] S. Eisexstat, H. ELMAN, AND M. SCHULTZ, Variational Iterative Methods for
Nonsymmetric System of Linear Equations, SIAM J. Num. Anal., 20{1983),
Pp. 345-357.

[71 Y. Saap anp M. Scrvirz, GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp.,
7(1986), pp. 865-869.

[8] A. ScmATZ, An observation concerning Ritz-Galerkin methods with indefinite
bilinear forms, Math. Comp., 28{1974}, pp. 959-962.

[9] J. Xv, Herative methods by space decomposition and subspace correction: A
unifying approach, SIAM Review (fo appear).

[10] , A new class of iterative methods for nonsymmetrix or indefinite prob-
lems, Siam J. Num. Anal., 29{1992), pp. 303-319.
{11] , Theory of Multilevel Methods , Ph.D. Thesis, Cornell 1989. Rep AM—48,

Penn. State U., 1989.
[12] J. Xu anp X. Cai, A preconditioned GMRES method for nonsymmetric or
indefinite problems, Math. Comp. (to appear in Oct. 1992)..



