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ABSTRACT

A method is developed to solve the unsteady Navier-Stokes equations on a composite grid, which consists of
subdomain grids moving with respect to each other. These subdomains are structured grids with different topologies.
This method eliminates assuming the moving components to be instantaneously stationary, where deciding on the
particular frozen instants is difficult and affects the solution adversely. Moreover, this method captures the boundary-
motion-induced flow component. The method is demonstrated through a transonic flow past an airfoil, which
experiences a combined motion of pitching and plunging. An O-grid around the airfoil is overlapped on a fine
Cartesian grid, which is zonally embedded in a coarse Cartesian grid. The coarse grid is stationary but the other
two grids are plunging. Only the O-grid is also sinusoidally pitching. The results are compared successfully with
the experimental data.

NOMENCLATURE

C :  chord length g :  primitive variables in a finer grid
G ¢ lift coefficient G :  primitive variables of pseudo-fine
G 1 pressure coefficient gn d points
d :  grid step size t Poume
DDT :  domain decomposition technique ug, U2, U3 @ velocity components
DOF 1 degree-of-freedom Re : R-eynolds number
Gy, Gz, G3 :  subdomain grids s : ;‘fx;ﬁwﬁ;sﬁna and 2
.HDD :  hybrid domain decomposition S . Cartesian linates
1 ! index in ¢3 direction o . angle of attack
k : reduced frequency A A2 :  upwind and central differences
KDD :  kinematic domain decomposition El e :  generalized curvilinear
M :  freestream Mach number e coordinates
Ge : pr%niﬁve variables in a coarser 11 : up and down motions
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INTRODUCTION

A domain decomposition technique (DDT) subdivides the flow domain into simpler subdomains
which accept easily constructed grids. Basically, there are four DDT’s: block-structured grids,
overlapped grids, zonal grids, and degenerate zonal grids. Block structured grids are the easiest to
apply, but the least flexible with geometries since the grid lines normal to the intergrid boundaries must
be contiguous. Zonal grids require common boundaries, which must be planar for the conservation
of fluxes across the interface. Degenerate zonal grids are a special form of zonal grids, which require
only a predetermined set of grid lines normal to the intergrid boundary to be contiguous, such as,
every n-th line. Overlapped grids are the most flexible with virtually no restrictions on geomefries.
However, it is rather difficult to construct a flux conserving scheme for the intergrid communications.

A class of unsteady flow problems involve configurations with one or more of the components
in relative motion with respect to the other components. It is difficult, if not often impossible, to
generate a single-domain, structured grid for such a problem. The present method is the extension of
the Hybrid Domain Decomposition reported in Ref. 1-4, to the moving boundary problems. Since at
least one of the subdomain grids is moving, this method is called Kinematic Domain Decomposition
(KDD) herein. Simulating such moving-boundary flowfields is also possible through static animations
[e.g. Refs. 2, 3, 5]. KDD, however, eliminates the need to assume the moving components to be
instantaneously static. Deciding on the particular frozen instants is often difficult and different choices
may produce non-unique results. KDD has previously been successfully applied to solve the flow
past a sinusoidally pitching airfoil and the flow past a cosine plunging airfoil [Ref. 6].

Possible applications of KDD include the separation of a store from a cavity, rotor stator interaction
in turbomachinery, propellers on a complete aircraft, tube-launched projectiles, staging process for
the multistage rockets, separation of the fuel tanks from the space shuitle.

GOVERNING EQUATIONS

The thin-layer approximation to the Reynolds-averaged, unsteady, compressible, Navier-Stokes
equations are written in conservation form and in the time-dependent curvilinear coordinates,

£m = £m(xl7x29x37t) , M= 1,2,3 (1)
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where Q is the vector of conserved flow properties. The inviscid fluxes are denoted by Ei, Ez, Es,
and the thin layer viscous flux is denoted by Eg, [Refs. 1, 6]. The fluid is assumed to be a perfect gas.
The Sutherland formula is used to determine the molecular viscosity. Reynolds stresses are modeled
with a modified Baldwin-Lomax turbulence model [Ref. 7]
Equation 2 is solved using the implicit, finite-volume, upwind algorithm described in Refs. 1,2,
3 and 8. Roe flux-difference splitting is used to construct the upwind differences for the convective
and pressure terms. The diffusion terms are centrally differenced. Spatial approximate factorization
and Euler backward integration, after lincarization in time, result in the solution through 5x5 block-

tridiagonal matrix inversions in three directions. The delta form of Eq. 2 obtained in this manner
is given below,

1 1
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The residual, Res(Q"), is the discretized representation of the spaiial derivative terms in Eq. 2
evaluated at the known time level (n). The accuracy of this scheme is second-order spatially and
first-order temporally.

Kinematic Domain Decomposition

In addition to the more popular domain decomposition methods (their descriptions are given in
Refs. 14, 9, 10), the degenerate zonal method is included in KDD for its simplicity and suitability
in refining the grid where necessary. It is required that-only every n-th line normal to the grid
interface is contiguous. If n=2, then the line which is not contiguous bisects the distance between the
neighboring two contiguous lines. This concept is a natural extension from the generation of coarse-
fine grids necessary in the multigrid convergence acceleration methods [Refs. 1, 8]. A schematic of
the degenerate zonal grid scheme, when all the grids are static, is shown in Fig. 1 for two dimensions.
The dashed lines define a finer grid embedded completely within a coarser grid depicted by the solid
lines. The crosses are the cell-center locations of the finer embedded grid. Each of the grids are a
rectangularly-ordered set of points; in the skeich, a portion of the flowfield is covered both by the
embedded grid and a portion of the coarser grid. The grids are coupled together during the solution
process. The cell-center variables on a coarser grid cell which underlies a finer embedded grid cell
are replaced with a volume-weighted restriction of variables from the four (two dimensional) or eight
(three dimensional) finer grid cells, similar to the restriction operators used in a global multigrid
scheme,

For the embedded finer grid, the computation boundaries occur either at a physical boundary
or along an interior line of a coarser grid. Along such a boundary, two additional lines of data
corresponding to an analytical continuation of the finer grid cell centers are constructed from
interpolation (or prolongation) of the coarser grid primitive variables (Fig. 1). Since for most of
the applications subdomain grids are nonuniform, the interpolation formula should allow variable step
sizes (d) in all directions. Although a linear interpolation formula is most commonly used for the
prolongation, an inverse averaging formula is more effective when more than two points are used for
the interpolation. First, the flow properties at coarse grid cell centers are interpolated to “pseudo-fine”
cell centers in each £3—constant plane of a three-dimensional grid by the following inverse averaging
on a four-point stencil (Fig. 2.a),

gc(4) + gc(B) 2(C) + a:(D)
Vit i d-s? Jd-s)+(d-9)? y(d-s)+]

53+ s2 \/s% + (dz — 82)? \/(dl — 1)+ (d2 — s2)* \ﬁdi ~ 1)’ + 53

Then, the flow properties of a fine grid cell center is obtained by interpolating the values of three
contiguous pseudo-fine cell centers in the £> direction (Fig. 2.b),

o= [0 D) | i) ] ,[ Ll ] ®

d3—s3 s3 dy+s3l'|dz—s3 sz datsg

In general, none of the (d) or (s) values are equal to each other. A two-dimensional prob%em requires
only Eq. 5 and the pscudo-fine cell centers become the actual cell centers of the fine grid.

During the restriction procedure, the primitive variables of a coarse grid are fcplaced from the
nearest eight (three-dimensional) finer grid cells using the following inverse averaging formula based

(7)) =
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on the instantancous relative distances (Fig. 3),

_ g5(1) q7(2) 25(3)
gc = + + >
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To decide on the type of hybrid domain decomposition for a problem with static boundaries
[Refs. 1-4], two major concerns are the geometry of the configuration and a priori knowledge of
the flowfield. In the case of dynamic objects, an additional concern is the type of motion of each
nonstationary component of the configuration. Using KDD, one can resolve a complex motion into
its simple kinematic components and assign a subdomain grid for each component of the motion.
For example, a two-component configuration with each component moving in six degrees-of-freedom
(DOF), can have a composite of twelve subdomain grids, each of which moving in a single DOF.
It should be noted that such a superposition can be done for the kinematics of the problem but not
for the nonlinear dynamics.

There are two major differences between the present KDD and HDD [Refs. 2-4]. First, each
subdomain grid can be moving. This is accounted for by the time-dependent curvilinear coordinate
transformations (Eq. 1), whereby the grid velocities are also determined. The nonlinear equations
(Eq. 2) are solved for the nonlinear rigid-body dynamics and the flowfield around it. Secondly, the
intergrid information transfer is time dependent. That is, all the searches and the book keeping for
the interpolations or other modes of transfers are renewed and updated as functions of time. The
accuracy and the efficiency of this process are the important issues in developing KDD.

Since the governing equations (Eq. 2) are written in the space-fixed frame of reference, all the
primitive variables are absolute everywhere and at anytime regardless of the subdomain grid in which
they are computed. Thercfore, they can be transferred from one subdomain grid to the other regardless
of the relative motion of these grids. This, however, is not true for the dynamic quantities, such as
forces and moments. If the primitive variables in 2 given subdomain were computed in the local and
relative frame of reference of that subdomain (Lagrangian approach), then they would be transferred
across the subdomain boundary after subtracting the relative velocity vector between the subdomains.
Hence, in the degenerate zonal method, restricting the residual values (Eq. 4) from the finer grid to
the coarser grid can only be done for static grids. Restrictions and prolongations in the kinematic
zonal method are performed for the absolute primitive variables only (Egs. 5-7).

When degenerate zonal grids are in relative motion, even every n-th grid line normal to the
interface may no longer be contiguous. If the grid motion is modified at every time step in order ©
ensure this contiguity, a fully conservative transfer of fluxes can be maintained as in the static case.
However the grid motion is no longer the desired continuous motion, but a motion described by @
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step-function. An alternative method is developed in this study. This method does not restrict the
grid displacement to the integer multiples of one spatial step, i.e it allows the displacement (s) to be
any fraction of one spatial step. Therefore, the weight factors of the prolongation (Eqs. 5, 6) and
the restriction (Eq. 7) keep changing with the motion. Equations of 5, 6, and 7 are used at every
time step and they account for the nonuniform grids with non-contiguous lines normal to subdomain
interfaces. Depending on the aerodynamic problem, it may be possible to freeze these weight factors
for a few time steps in order to save some computer time.

The demonstrative case presented in this paper is for an airfoil engaged in a prescribed motion of
pitching and plunging, which is described in the next section. The KDD grid generated for this case
is shown in Fig. 4. A stretched O-grid (117x29) is wrapped around the airfoil and overlapped on
a fine Cartesian grid (41x41). Then the fine grid is embedded in a coarse Cartesian grid (49x49).
The total number of grid points is 7,475. For convenience, the coarse and the fine Cartesian grids
and the O-grid are denoted by Gy, G3, G3, respectively. The absolute frame of coordinates are fixed
on G; which is also space fixed. G5 and G3 are free to move relative to each other and Gy. Grid Gy
is space-fixed in order to accommodate a conceivably stationary component of a configuration. Also,
Gy is relatively coarser to cover the farfield with fewer cells. Topologies of Gy and G3 are nonsimilar,
Grid G, is needed for two reasons : first, it is a relatively finer grid with cell sizes comparable to
those of Gs as needed by the overlapping algorithm (Ref. 1), hence a fine grid is used only where
needed; second, G; experiences only the plunge motion and the information transfer between the
degenerate-zonally embedded G and G, is much easier than the overlapping algorithm.

RESULTS

The kinematic domain decomposition (KDD) is demonstrated through a transonic flow past an
airfoil, which experiences a combined motion of pitching and plunging. The computational case is
the simulation of a transonic flow past a NACA-0012 airfoil, which experiences a combined motion
of sinusoidal pitching and constant-rate plunging. The freestream flow conditions are Moo = 0.6 and
Re=4.8x 105. This pitching motion is described by the following time function for the angle of attack,

a(t) = ap + a sin (Meokt) &

where the amplitudes are ao=0°, ay=2.44°. The reduced frequency is k=0.162 radians. The rate of
plunge, My, is determined as the vertical component of the freestream velocity approaching at an
angle of attack (Fig. 5),

M, = Myosin(ag) ®

where 0=4.86°. Therefore, the airfoil is plunged down 3.286 chord lengths during one cycle of the
sinusoidal pitching. There is no available experimental data for a flow past an object in such a complex
motion. However, the experimental data reported in Ref. 11 can be used for comparison with a small
modification. This experimental data is for the sinusoidally pitching motion (Eq. 8) with ao=4'.86°.
The effect of constant-rate plunge in the computational case is compensated by the initial amplitude
of the angle of attack (4.86°) in the experiment. Therefore, the flowfield of the computational case
differs from the flowfield of the experiment by only the plunge-motion-induced flow component.

The initial solution is obtained for the steady flow at o=0° using local time steps and the multigrid
convergence acceleration. Then the unsteady equations are solved time accurately for the sinuso?dal
pitching motion only (Eq. 8) until the limit cycle is reached. Finally, the solution is obtaix{ed time
accurately for the flow past the airfoil in combined motion of pitching (Eq. 8) and plm{gmg.; (Eq
9). where the airfoil plunges from x3=0 to x3=6.56C. It also experiences two cyc{es of piiching in
the meantime. One cycle of the motion corresponds to 64.64 time units. Using a time step of' 0.01,
one cycle is completed in 6,464 time steps. The computer time needed for one cycle is 24.7 minutes
on a Cray-2.
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The accuracy of KDD in simulating a flow past an oscillating and plunging airfoil is studied
by comparing the result with the experimental data. The instantaneous Mach number contours at
0=2.11°T and x3=-0.544 C are shown in Fig. 6. The instantancous effect of the plunge-down at
M,=0.0508 on the flow is somewhat similar to a steady flow at 4.86° angle of attack. The flow
expands around the leading edge from the stagnation point to form a supersonic pocket, which is
terminated by a shock. The wake starts with a small separation region on the upper surface close to
the trailing edge and relatively lower Mach numbers are visible in this region.

Instantaneous surface pressure coefficients at angles of attack 5.95°7, 6.97°7, 6.57°] and 5.11°| are
shown in Fig. 7. The comparison is favorable with the experimental data [Ref. 11]. The maximum
and the minimum C, values of all the instants are captured. Small discrepancies are observed in
the shock region. Variation of the lift coefficient with the angle of attack is presented in Fig. 8.
This curve can be followed in a counterclockwise sense where the pitch-up and the pitch-down are
represented by the lower and the upper portions of the curve, respectively. The C; values for of and
o} are not equal to each other. This is due to the boundary-motion-induced flow, which can only
be captured by dynamic-body calculations. The computed results agree well with the experimental
data. Some discrepancy, however, is detected at higher angles of attack. This may be due to the
plunge-motion-induced flow which are not represented in the experiment. Also, contributing to the
discrepancy are the numerical errors involved in the temporal and spatial representations of the fluxes
across the subdomain grid interfaces.

CONCLUSIONS

A method is developed to simulate computationally an unsteady flow past an object engaged in
a complex motion. The method employs a composite of subdomain grids, where each subdomain
grid can engage in a different type of motion. Hence, it is called Kinematic Domain Decomposition
(KDD) herein, The composite grid can be a hybrid of multiblock, zonal, and overlapped grids. The
flow equations are solved using the time dependent generalized coordinates in the absolute frame of
reference. The absolute values of the primitive variables are transferred across the grid interfaces.

KDD is demonstrated through a transonic, viscous flow simulation. The results compare favorably
with the experimental data. Numerical errors can be further reduced by; (1) a judicious hybridization of
KDD, whereby the weaknesses of each method are optimally avoided, (2) decreasing the time steps,
(3) refining the grids at the subdomain interfaces, and (4) more frequent updating of the intergrid
information,

Simulating the flowfield with the objects in motion, as opposed to a series of solutions where the
objects are frozen instantaneously (static), gives more accurate results, captures the boundary-motion-
induced flow component, and it is more efficient.

The strength of the KDD method can further be utilized by applying it to a flow past a complex

multicomponent configuration with one or more of its components in relative motion with respect
to each other. :

T%le current improvements of this KDD include the second-order time integration, extensions
for sm-degree-oﬂfreedom motion, removal of prescribing the motion, and finally applying to the
unsieady interference flows involving the relative motion.
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Fig. 2 : A typical stencil for kinematic degenerate
zonal grids during communication from Fig. 4 : Kinematic Domain Decomposition grid for an

the coarse grid to the fine grid boundary airfoil moving with two degrees-of-freedom.
(prolongation). G1 : Global Cartesian grid
(a) two dimensional planes Gs: Fine Cartesian grid zonally embedded
® coarse grid cell center (A, B, C, D) in Gj for translational motion.
© pseudo-fine cell center G3: O-grid overlapped on Gy for
(b) the third dimension rotational motion.
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Fig. 5 : Velocity diagram for an airfoil plunging
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Fig. 3 : A typical stencil for kinematic degenerate
zonal grids during communication from
the fine grid to the coarse grid (restriction).
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Fig. 6 : Mach number contours of a sinusoidally
pitching and constant-rate plunging
NACA-0012 airfoil at o=2.11%and
Mp=0.0508 computed on KDD grid.
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Fig. 8 : Lift coefficients versus the angle-of-attack
for one cycle of a sinusoidally pitching
NACA-0012 airfoil.
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