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We discuss in this article the numerical solution of boundary value problems from Physics and
Engineering by fictitious domain/Lagrange multiplier methods. These methods are combined to finite
element methods to obtain algorithms, which on the basis of preliminary numerical experiments look
robust and accurate. Application to elliptic problems, to the time dependent incompressible Navier-
Stokes equations and to the Helmholtz equations are discussed in details, including the results of

numerical experiments used to validate the methodology investigated here.

1. Introduction

Fictitious Domain Methods for Partial Differential Equaiions have shown recently a most
interesting potential for solving complicated problems from Science and Engineering (see, for example,
[1] for some striking illustrations of the above statement). One of the main reasons of this popularity
of fictitious domain methods (they are sometimes called domain imbedding methods; cf. [2]) is that they
allow the use of fairly structured meshes on a simple shape auxiliary domain containing the actual one,

allowing therefore the use of fast solvers.
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On the other hand, the method is not without some complications; in particular, we have to
compute and store the intersection of the actual boundary with the neighboring mesh elements.
However these tasks are localized at the actual boundary and they may be fully automatized, whatever

is the geometry (see [3] for more details and applications to transonic flow calculations).

In this paper we discuss a family of fictitious domain methods which are based on the explicit
utilization of Lagrange multipliers defined on the actual boundary and associated to the genuine
boundary conditions. The resulting methodology has definitely the flavor of panel methods, which

have been quite popular for the simulation of inviscid incompressible potential flows.

The remainder of this article has been divided into three sections: In Section 2 we introduce

the multiplier/fictitious domain methodology by considering the solution of a Dirichlet model problem.

In Section 3 we consider the Lagrange multiplier/fictitious domain solution of the Navier-
Stokes equations modelling incompressible viscous flow; indeed this section generalizes — from our
point of view — the methods described in [4] concerning the fictitious domain solution of the Stokes
problem.  Finally, in Section 4 we address the solution of the harmonic Helmholtz and Maxwell
equations. The method discussed there is an alternative to the fictitious domain/control methods

described in [5]. Some other numerical results are also presented.

2. A fictitious domain/Lagrange multiplier method for the linear Dirichlet problem.

2,1  Formulation. Generalities.

Motivated by the solution of the Navier-Stokes equation we consider the following Dirichles

problem
(2.1) en — vAu = finw,
(2.2) u=gon7y,

where @ (resp. ) is a nonnegative (resp. positive} number, and where f and g are defined over w and 7,
respectively, w being a bounded domain of rd (d>1) and 7 its boundary. Problem (2.1), (2.2) has a
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. . . 2 . .
unique solution and assuming that feLz(w), geHl/ (7) we can show that u is also the solution of the

following variational problem

uGVg,

(2.3)
J(auv + vVu-Vv)dx = J fvdx, VVEH})(“’)’
W w

with

Vg = {v]veHl(w), v =gon~v}

2.2 A fictitious domain approach to the solution of problem (2.1), (2.2), (2.3).

Let us consider a “box” € such that @CQ (see Figure 2.1), and denote by T' the boundary of

Figure 2.1
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We have then equivalence between (2.1), (2.2), (2.3) and the saddle-point problem:

Find {i, A}EVXH_1/2(7) such that

(2.4) I (aiiv + »Vii-Vv)dx = J fvdx + <Av>, ¥vev,
Q
-1/2
(2:5) <p, i-g> =0, VueH /(7%

= = -1
where T ELZ(Q) and satisfies f|,, = f, where <-,-> denotes the duality pairing between H / 2('y) and
Hl-/ 2(7) and where V is a well chosen subspace of Hl(ﬂ). Natural choices for V are HI(Q), H(l)(Q) and

H%,(Q) = {v!veHl(Q), v periodic at I'}.
We have then
(2.6) —

Remark 2.1: The pair {ii,A} solution of (2.4), (2.5) is a saddle-point over VxH—l/ 2(‘)() of the
Lagrangian functional £: HI(Q)XH-I/ 2('y) — R defined by

(2.7) L{v,p) = %J (a|v|2 + V[Vv|2)dx - j fvdx — <p,v—g>.
Q

2.3  Tterative solution of problem (2.4), (2.5).

For simplicity, we take V::H(I,(Q). The conjugate gradient algorithm fo be described in this

paragraph relies on the following
Proposition 2.1:  The multiplier X is solution of the boundary equation
(2.8) Ad=2g

/2

where A 1s a strongly elliptic isomorphism from H—l/ 2(7) onio H1 and where ;’J’EHI’/z(‘/).
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Proof: Define operator A as follows
. -1/2 . . . - s
(i) To peH ' “(v) we associate the solution u i of the following elliptic variational problem

uyev

(2.9)
J (aul‘v + vVu,-Vvdx = <p,v>, Vvey,
Q

which has a unique solution.
(ii)  Define A by
(2.10) Ap = uyly.

Operator A clearly belongs to L(H~1/2(7), H1/2(7)); we also have

-1/2
(2.11) <, Ap> = J (auy u”, + Vuu-Vu”,)dx, Yu, p'cH / 1),
Q

which implies in turn that A is self-adjoint and strongly elliptic over H—1/2(7).

Next we define ug by

ug €V,
(2.12)

I (aupv + vVuy-Vv)dx = J fvdx, Vvev;
Q Q

problem (2.12) has a unique solution.

Substracting now (2.12) from (2.4), we observe that u ) =10 —ue, which implies in turn that

(2.13) AX = (i — uo)ly = g — Uoly-
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We have thus proved (2.8) for =g — uoly. O

The multiplier ) is therefore the solution of the linear variational problem

(2.19) {

Operator A is definitely close to those Steklov-Poincaré operators which play a very important

rer My,

-1/2
<p, AA> = <p, >, VucH / (-

role in the theory of domain decomposition methods.

From the properties of A we can solve problem (2.8), (2.14) by a conjugate gradient algorithm

operating in the space H_l/z('y). Indeed, due to the difficulties associated to the handling of space

H-l/ 2(';() we shall consider the solution of (2.8), (2.14) in the space L2(7). This simplification makes

sense if z\ELz(A); since A is essentially the jump of gﬁ

on 2t 7 A will be in L2(7) if g is sufficiently

smooth (g€H?(7), s>1, will imply this property).

Description of the conjugate gradient algorithm:

If the solution A of (2.8), (2.14) is in L2(7), it clearly satisfies

AeL2(y),
(2.15)

[ Anudy = [puar, vuer?e,
Y Y

with f=g—uo|y. Applying to the linear variational problem (2.15) the general conjugate gradient
algorithm described in, e.g., [6, Chapter 3], we obtain

(2.16) Xe Lz('y) given;

solve
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u®ev,

(2.17) {

I (au®v + »Vu°.Vv)dx = vadx + J AOvdy, Vvev,
Y

Q Q
and then
g°eL’(y),
(2.18)
J gpdy = J (u®—g)udy, Vpel(y),
Y Y
and set

(2.19) wl=g° O

Solve

(2.20) {
[
Q

7

compule

[ 182
(2.21) pn = e

J Tlwldy

it
set
(2.22) anHl

(23 oo gm_ pEn
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and solve
g er?(y),
(2.24) {

1 .
Ign+ pdy = Jgnﬂdv - pnjunudv, v peL(y).
7 Y Y

+1 o n+1 ~ n+1 .
IFllg™™ /Hg Il <e, take A = X andii = w ' 7; if not compute
L%(7) L%() ’

P12 n,2
(2.25) 7n = llg 1|L2(7)/l|g ”L2(7)

and set

(2.26) witl = gn+1 + pwh.

Do n=n+1 and go to (2.20).

Remark 2.2: It follows from (2.16) — (2.26) that the effect of the actual geometry is taking place in
(i)  The way 7 is constructed

(if)  The integrals over v in the right hand sides of (2.17) and (2.20)

(iii) Evaluation of the L2(7)-scalar products in (2.18), (2.21), (2.24) and (2.25).

On the other hand - and this is a justification of the method - the bilinear form in (2.17),"
(2.20) is independent of w and .

In the following Section 2.4, we shall discuss a finite element implementation of problem (2.4),
(2.5) and of the conjugate gradient algorithm (2.16)—(2.26).
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2.4  Finite Element Approximation of Problem (2.4), (2.5).

Let Vp (resp. Ap) be a finite dimensional subspace of V=H(1)(Q) (resp. of L2(7)). We
approximate the variational system (2.4), (2.5) by

(2.27) J (omy vy, + vVuy - Vv )dx = J f'vhdx + I Apvpdy Vv €V,
9] Q Y

(2.28) I (uh-—gh)phd'y =0, Vpy €Ay,
Y

(2.29) w €Vy, AL €A

The spaces V} and A can be fairly independent from each other (as already observed in [7]in

a related context); actually, V), can be a finite element space based on a regular mesh in (Vh can

also be related to spectral type approximations). On the other hand A}, can be directly related to the

geometry of v and does not need to be satisfying uniform discretization properties. At that stage, we
/2

()

which is the natural functional space for the multiplier A. From this observation it makes sense to use

. e s -1
think that it is important to remember that Ay plays the role of not only L2(7) but also of H

a space Ay consisting of discontinuous functions over v (piecewise polynomial, for example). Another

important issue is the ability to compute easily boundary integrals such as

(2.30) J vh[_shd'y, VvaVh, PR EAL;
Y

numerical integration can be used for this purpose. Concerning the conjugate gradient algorithm
(2.16)—(2.26), very few modifications have to take place to obtain its discrete equivalent, the essential

ones being

BhEAY

(2.31)
' I gpapdy = J (up — g )updys Yoy €A,
Y Y

instead of (2.18), and then
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(2.32) {
2l dy = | @ dy — po| TBp dy, Vi €A
8y T HpdY = | g HpdY — o Ty ARAYs VL EAL,
vy Y v

instead of (2.24).

Numerical implementations of the above methodology will be described in the followir

Section 2.5.

2.5  Numerical Experiments.

The goal of this section is to validate the fictitious domain/Lagrange multiplier paradigm
through the solution of some quite simple test problems of Dirichlet type; application to the solution fo
more complicated problems will be addressed in Section 3 (Navier-Stokes equations) and 4 (Helmholtz

equations).

2.5.1 A first test problem.

The test problem to be discussed in this paragraph is the Dirichlet problem below

(2.33) {

with ¢=100, »=.1 and w=(.25, .75)x(.25, .T5).

ou — vAu = f in w,

u=gony,

The data f and g have been chosen so that the solution of problem (2.33) is

u(xy, X5) = x% + x%, Y {x, X9} €w,

(which implies f(x;, x5) = a(x% + xg) ~ 4v).

In order to test our fictitious domain methodology, domain w has been imbedded in the larger
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domain 2=(0,1) x (0,1) (as shown in Figure 2.2, below)

*2
&
75
w v
25 . r
Y :
H '
- ! r 1
.25 .75
Figure 2.2

and function f has been extended by a(x%+x%)—4u over .

For the space V occurring in (2.4) (see Section 2.2) we have taken

V= Hll:,(ﬂ) = {vlveHl(Q), v periodic at T'}.

In order to implement the fictitious domain methodology we introduced triangulations ‘fl'h of Q

such that the one shown in Figure 2.3

/

/|

X1

-~
Cod

Figure 2.3 (Triangulation of Q; h=1/4).
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These triangulations are such that ¥ is supported by edges of ‘fl'h. Next we approximate V by
V;, such that

with Pl: space of the polynomials in 2 variables of degree <1. In order to use the discrete formulation
(2:27)—(2.29) (see Section 2.4) we need to define the multiplier space Ap; an obvious choice is to
define An by

(2.34) Ay = {l‘hlﬂh = f‘hlya ﬂhevh}i

another natural choice is to define Ap by
(2.35) Ap = {phlph, #y, = const. on the edges of ‘:Th supported by 7}.

Indeed choices (2.34), (2.35) lead to satisfactory results (second order accuracy is obtained),
but results of much better quality (although no better than second order accurate) are obtained if one

defines Ay by

Ay = {/,t |, = const. on the intervals joining the midpoints of the edges of
(2.36) { h h!#h

‘:Th supported by 'y};

choice (2.36) is visualized on Figure 2.4 below (we have shown the midpoints).

X9
A

%

v

Figure 2.4



LAGRANGE MULTIPLIER APPROACH 163

In a sense we use a staggered boundary grid to define Ay by (2.36). When implementing the
finite dimensional version of algorithm (2.16)—(2.26) the discrete analogues of problems (2.17), (2.20)
have been solved by a Fast Elliptic Solver compatible with periodic boundary conditions and based on
cyclic reduction (see [2], [8]—[14} and the references therein for this approach). Table 2.1, below, shows
the performance of the finite element analogue of algorithm (2.16)—(2.26) applied to the test problem
considered here, when Ay is defined by (2.36) (the stopping criterion is the discrete analogue of

(2:37) J 1" 2dy / j g°)2dy < 10714,
Y Y

h Number of -y lloo
iterations
1/8 7 2.6x10°3
1/16 13 6.5x1074
1/32 20 1.6x107
1/64 27 4.1x10°°
Table 2.1

The above table clearly suggests that:
(i) The approximation is second order accurate.

1/2

point of view since the condition number of the discrete analogue of operator A (see Section 2.3)
is o hy.

(ii) The number of iterations increases as b ', which is what we can expect from a theoretical
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Figure 2.5 shows (on a logarithmic scale) the variation of the residual

"gﬁ+1l[L2(1) / “gﬁ”L2 ™ versus the number of iterations, for h=1/64. The computed results

coincide quite well with the exact ones as shown on Figure 2.6 where the variations of xl—-m(xl,.5)
and xl——buh(xl, .5) have been represented; both curves can not be distinguished, in practice. Actually,

and as it can be expected, the maximum error is reached on 7 (see Table 2.2).

0

log;,(Res)

Figure 2.5
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Figure 2.5 shows (on a logarithmic scale) the variation of the residual

||g§+1|1L2(7) / I|gﬁ[|L2(7) versus the number of iterations, for h=1/64. The computed results

coincide quite well with the exact ones as shown on Figure 2.6 where the variations of xl—m(xl,.5)
and xl——»uh(xl, .5) have been represented; both curves can not be distinguished, in practice. Actually,

and as it can be expected, the maximum error is reached on 7 (see Table 2.2).

0

logo(Res)

n

Figure 2.5
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0.0
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Figure 2.6

I3

Approximated
Solution

0.75

Erxor

0.250000008+00
0.26562500E+00
0.28125000E+Q0
0.29687500E+00
0.31250000E+00
0.32812500E+00
0.34375000E+00
0.35937S00E+0Q
0.37500000E+00
0.39062500E+00
0.40625000E+00
0.42187S00E+00

0.50000000E+00
6.50000000E+00
0.50000000E+00
0.50000000E+00
0.50000000E+00
0.50000000E+00Q
0.50000000E+00
0.50000000E+00
0.50000000E+00
0.50000000E+00
0.50000000E+00
6.50000000E+00

0.437 a0
0.45312500E+00
©.48875000E+00
0.48437500E+00
0.50000000E+00

3. +04Q

0.31245938E+00
0.32053171E+00
0.32908626E+00
0.33812538E+00
0.34765049£+00
0.35786247E+00
0.368161888+08
0.37914304E+00
0.39062416E+00
0.40258736E+00
0.415038735+00
0.42797830E+00
G.44140610E+00

0.50000G00E+00  0.43532216E4+00
0.50000000E+00  0.46972848E+00
0.50000000E+00  0.48461907E+00

00 0.49 4E+00

0.51562500E+0 Q. 5Q0Q0000E+00
8.5312 00 . 506 00
0.546875008+00 0.50000000E+0

0.56250000E+00 ©.50000000E+00
0.57812500E+00 0.500000005+00
0.59375000E+00  0.300QGG00E+0G
0.609375008+00  0.50000000E+00
6.62 00 30

0.64062500E+0

0.65625000E+00
0.87187S00E+00
0.68750000E+00
0.703125002+00
8.7187500CE+00
0.73437500E+00

Q. 0

9.50000000E+00
9.50000900E+00
4.50000000E+G¢
0.50000000E+G0
0.5000000C0E+00
0.50000000E+00
0.50000000E+00
a o8

a.

0.51586907E+00
9.53222648E+00
0.54907216E+00
0.56840610E+00
0.584228308+00
G.60253873E+00
0.62133736E+00
0.64052416+00
G.660395042+00
0.58066188E+00
0. 701412472400
0.72265048E+00
0.74437538E+00
0.76658628E+00
0.78928170E+00
0.81245937E+00

Table 2.2

G.40819671E-04
0.24931408E-04
0.15297547E~0¢
0.93880402E-08
0.576484988-08
0.35440663E-05
0.21831863E-05
0.134945218-05
0.83882777E-08
0.526242218-06
0.33506095E-06
0.218367238-06
G.147494178-08
0.10501266E-06
0,80454828E-07
6,.67802001E~07
0.63901782E-07
0.878020738~07
0.80464395E-07
0.105012995-06
0.14749484E~06
0.21836367E-08
0.335064272-06
0.52625034E-06
0.839848438-08
8.1349S5057E-65
0.218332£32-05
0.35444325E-05
©.57657965E-05
0.33504152E-05
0.155031448-04
0.249424498-04
0. 40628824E-04

165
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3. Application to the Navier-Stokes equations for Dirichlet boundary conditions.

3.1 Generalities. Formulation.

In this section we shall briefly discuss fictitious domain methods for solving the unsteady
incompressible Navier-Stokes equations for Dirichlet boundary conditions. In this section, which can be
seen as a generalization of [4] we take full advantage of time discretization by operator splitting

methods to implement fictitious domain methods.

Using the notation of Figure 2.1 (see Section 2.2) we consider the following Navier-Stokes

equations
3.1) %ltl — vV + (uViu+ Vp=~finw,
(3.2) V-u = 0 in w (incompressibility condilion),
(3.3) u =g on vy (with Jg‘n dy = 0),

it
(3.4) u (x,0) = up(x), x€w, with V-ug = 0.

In (3.1), (32), u= {ui}g___l is the flow welocity, p is the pressure, f is a densily of

d

ezternal forces, v(>0) is a viscosily parameter, V= {36;}(1 V2=A=E
i =

2
=1’ ) 2, and

1 8xi

(V- )W = g'z:::l Vj —a—% i=1

3.2 An equivalence result.

We imbed w in £ as shown in Figure 2.1 and define

Vp = {vgve(Hl(Q))d, v periodic at r}.

Next we observe that if Uy is an extension of n, which is divergence free in , and fan

extension of f, we have equivalence between {3.1)—(3.4) and
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-vdx + VJVU -Vvdx + J(U V)U-vdx ——JPV vdx =

f-vdx + j/\ -vdy, VvEVp; U(t)EVp a.e. t>0,

| &
'{i

Y
(3.6) V.U =0inQ,
(3.7) U(x,0) = Uo(x), x€Q,
(3.8) U=gonn7,
in the sense that
(3.9 Uly = u, Pl = p.

Concerning the multiplier A, its interpretation is very simple since it is equal to the jump of

ug—g—nP at 7.

3.3 A method combining fictitious domains and operator splitting.

In order to solve (3.5)—(3.9) we shall time discretize it by an operator splitting method like
the ones discussed in e.g. [6], [15]—[18], [31], [33], [34].

For simplicity, we consider the time discretization of (3.5)—(3.9) by the Peaceman-Rachford
scheme (cf. [15]). With At(>0) a time discretization step we obtain

(3.10) U° = U,

for n>0, knowing U™, we compute {Un+1/2, Pn+1/2, /\n-!-l/Z} and then UOT! by solving
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n+1/2
JU Ai /é—Un.vdx + §IVU“+1/2~Vvdx _ JPD+1/2V-V & J' A2
(3'11)1 { Q ¥
an‘l‘l/z.vdx — %JVUH-VvdX - J(UH-V)U“-vdx, VVEVP,
Q

n1/2

(311), V.U 0 in Q,

o2 A2

(3'11)3 et

2 2
@1y, T ey, P 2o 2(q),

and then
n+l - n+1/2
P—.A—_t%—_.-vdx + %JVUIH'I-VvdX + I(UH-H/ 2.9y lvax =
(3.12); { Q Q Q
2
Jlfn_'-l-vdx + JAn+1/2-vd7 + JPn+1/2v-vdx - %IVUH_H/ -Vvdx, VVEVP,
Q Y Q Q

G12), vlev,.

Due to page limitation we shall not give a detailed account on the solution of problems (3.11)

and (3.12); we shall make however the following remarks:

Remark 8.1: Problem (3.11) can be solved by a variant of the algorithm described in Section 2, the
main difference being that at each iteration, we have to solve a Stokes problem instead of a simple
elliptic problem. However due to the periodic boundary conditions, it follows from, e.g. [18], [19], that

Stokes problems can be solved by iterative techniques converging in one iteration

Remark 3.2: We have taken advantage of the splitting to treat the advection without being concerned
about the constraint u=g at . Also due to the periodic boundary conditions, problem (3.12) is well
suited to solution methods based on high order upwinding on regular meshes, or on the backward

method of characteristics (see, e.g. [20]).
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Remark 3.3: The fictitious domain approach discussed here seems to be well suited for those situations

where 7 is time dependent like in some free boundary problems for example.

3.4  Numerical Experiments.

The results presented here are quite preliminary; they concern the time dependent Stokes

problem

(3.13) %‘ — vV 4+ Vp = 0 inw,
(3.14) V-u = 0 in w,

(3.15) uy = 0 in w,

(3.16) u=gon-7,

in the case where w={(.25, .75)x(.25, .75) and where g is defined as follows:

(3.17) g(x,t) = (1—e®%) {1,0} if x, €(.25, .75), xp= .75; g = 0 elsewhere on 7.

On the basis of {18], we have taken the same triangulation to define the discrete velocity and
pressure spaces, this being justified by the periodic boundary conditions. It seems however that the
space Ay containing the discrete multipliers has to be properly defined in order to avoid spurious

oscillations for the pressure; we shall go back on this fundamental issue in a forthcoming article.

Via time discretization, problem (3.13)—(3.17) has been reduced to a sequence of Stokes
problems, which were solved by a fictitious domain method closely related to the one discussed in
Section 2 for elliptic problems. Integration has been carried out until a steady state has been reached.
We have taken »=10"2, a=>50, At=10"2 and h=1/32. The various elliptic problems encountered in

the solution process have been solved by cyclic reduction as in Section 2.

Figure 3.1 shows the streamlines of the computed solution in w. Figure 3.2 shows the graph of
the computed stream function ¥, i.e., the solution of the discrete analogue of
dug  Ou

DAY = Bxl 6x2 inw, P =00n7y
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(7 )

12
10H
8
6
4
2

16+
14+

Figure 3.1

(Streamlines of the steady solution)

Figure 3.2

(Stream function visualization)

16

12

10
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Figures 3.3 and 3.4 show the discrete pressure contours (isobar lines) and graph, respectively.
We observe that the discrete pressure is totally clean of spurious oscillations, despite the fact that the

same triangulation has been used to approximate both pressure and velocity.

TG
A

Figure 3.3

16

1

(Pressure contours)

Figure 3.4

(Pressure visualization)
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4. Lagrange multiplier/fictitious domain solution of the Helmholtz equation.

4.1  QGeneralities.

Motivated by Accoustics and Electromagnetics we consider the scattering of a monochromatic
wave (of wave number k) by an obstacle A(CRd, d=2 or 3) of boundary . The reflected field

satisfies the following Helmholtz equation (which is complex valued)

(4.1) Aut+k?u = 0 in RI\Z,
(4.2) u=gon7y,
i—d
. i_. _ 5
(43  lim (L-ipu=0(x %),

where relation (4.3) is the classical Sommerfeld radiation condition (see [21]). A classical approach for
field solution methods is to bound Rd\K (see Figure 4.1) and to specifiy on the aertificial boundary T
well chosen absorbing boundary conditions (see, e. g., [22], [23], [24] for more details). We shall call w
the bounded physical domain and define Q by Q=interior of (BUA).

Figure 4.1
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First order (resp. second order) absorbing boundary conditions are given by

(a.9) (;%- —ik)u:O onT
(resp. ’
(4.5) (& -k —Lap)a=0 onr).

In (4.5), AI‘ is the Laplace-Beltrami operator. The Helmholtz problem whose solution will be
discussed in the following paragraphs is finally (4.1), (taking place in w), (4.2), completed by either
(4.4) or (4.5). Let us mention that equations (4.1), (4.2) model electro-magnetic phenomena in the
case of TM polarization (TM: Transverse Magnetic). Let us mention also that everything else being
the same, the second order condition (4.5) allows smaller domains 2, resulting therefore in significant

CPU and storage savings.

A multiplier fictitious domain formulation of problems (4.1), (4.2), (4.4) and (4.1), (4.2), (4.5).

In ref. [4] a non multiplier/fictitious domain method (based on a conirol formulation) has been
discussed and the corresponding numerical results have been reported in [25]. In this section we would
like to address the solution of (4.1}, (4.2), (4.5) (which is the more complicated problem) by a method
which is conceptually close to the method already discussed in Section 1. Before describing the
fictitious domain method it is most useful to derive an appropriate variational formulation of problem

(4.1), (4.2), (4.5). As in [4] we introduce the following (complex) Hilbert space
(4.6) V = {vlv = v; + ivge BY(Q), VpvelA(D)},

where V. is the tangential gradient of v on T. It is then quite easy to show that (4.1), (4.2), (4.5) is

equivalent to the following variational system

(4.7) j (Vi-Vv— k25 vidx — i J' (kiiv — 2lk Vp 8-V vT' = <A, v>, VeV,
Q ,
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i
(4.8) <p, G—g>=0, YpeH ?(v),

(4.9) aev, xem ().

, 1 1
In (4.7), (4.8), <:, -> denotes the duality pairing between H 2(y) and H?%(y). We clearly

have u=fi|,. From now on, we shall drop the ~ from fi. Despite the fact that computers can work in
complex arithmetic we shall consider (4.7)-(4.9) as a system of real valued equations for the unknown
functions uy, ug, such that u=u, +iug, and Ay, Ay such that A= )\1+i,\2. We shall denote by u and A
the pairs {uy, uy} and {A;, Ay}, respectively. With this notation, equations (4.7)—(4.9) yield (with
this time V defined over R)

ueVxV; YveVxV we have

(4.10)
J (Vu-Vv — k2u-v)dx + J. (kRu-v — 711—{ ViRu-Vpv)dl' = <A, v>,
-1/2 -1/2
@iy <mu—g> =0, vaer

where, in {4.10), the (rotation) matrix R is given by

0 1
{4.12) R = ( ),
-1 0

and where g = {g;, g} (if g=g; +igy)-

4.3  Tterative solution of Problem {4.10), (4.11).
4.3.1 Generalities.

Due to the presence of matrix R, the bilinear form in the left hand side of the equation in
(4.10) is nonsymmetric; indeed it is also indefinite. Due to these properties, we can not expect
algorithms like (2.16)—(2.26) (which is essentially a saddlepoint searcher (4 la Uzawa; cf. [26,
Chapter 2 and Appendix 2])) to converge. Unfortunately, numerical experiments confirm this



LAGRANGE MULTIPLIER, APPROACH 175

prediction. Since this preliminary article is mainly a feasibility study, we have decided to address the
solution by a least-squares/conjugate gradient algorithm; indeed the resulting formulation and
associated algorithm remind strongly of the fictitious domain/control approach discussed in [4] and
suggested to us by P. L. Lions [27]. We intend to address subsequently the solution of (4.10), (4.11) by

more sophisticated algorithms (like those discussed in [28], for example).

4.3.2 A least-squares Formulation of Problem (4.10), (4.11).

Following an approach which has been successful in other contexts (as shown in [29]—[34], for

example) we formulate problem (4.10), (4.11) by

4.13 Mi I(v
(4.13) B eVxVxa (v, 1)y

where /\=L2(7)><L2(7), where J:VxVx A—R is defined (with o and 8 both positive) by
@1 3n ) =4 [ (s + alviPax + § [ ey,

Q2 v
with y(=y(v, u)) and n(=7n{v,u)) the respective solutions of

YEVXV; VzeVXV we ha'aeJ (Vy-Vz + ay-z)dx =

(4.15) { Q
J(Vsz — k2v-z)dx + J (kBRv-z — %{Ver-Vrz)dI‘ - J,wzdv,
r r
(4.16) NEA; VOEA we hauej. p-0dy = J (v — g)-8dvy.
7 7

4.3.3 Conjugate Gradient Solution of the Least Squares Problem (4.13).

Using a classical perturbation analysis we should easily prove that the derivative Jf(v,p) of

J(-,+) at {v,u} is defined by
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< (v,p), {w,0}> = J (Vy-Vw — Ky-wydx + J (kRty-w + LV Rby.V wdr
(4.17) { Q r
+ ,BI nowdy — J.y-ﬂd'y, V{w,0}eVxVxA.
5 ¥

Using now the knowledge of J' we can solve problem (4.13) by the following conjugate gradi
algorithm which operates on VXV XA equipped with the following metric

1
0y seysen = ([ (9al? + alsiPyax + o] 10124
Q Y

Initialization:
(4.18) {u®,X°}eVXxVxA is given;

solve then the following variational system

¥ EVXV; YzeVXV, we haveJ‘ (Vy°-Vz + ay° -z)dx =
(4.19) Q
J (Vu®.Vz — k2u°~z)dx + J (kRu®-z — — VrRu -Vpz)dl — J A°.zd7,
Q r Y
(4.20) 7°€A; YOCA we have J 7°%-0dy = J (0° — g)-8dy.
it Y

Neat, define g° = {g3, gK}EVxVx/\ by

J(Vgg-Vz + agd-g)dx = f (Vy°-Vz — k2y°-z)dx + J(th'y -z ——l—VFRtyooVrz)dI‘

2%
(4.21) { Q Q r
+ ﬁJnO-zd'y, YzEVXV; gaeVxV,
Y
ﬁj gypdy = — Jy"-ud'r, VHEA,
(4.22) { Y Y

BEA,
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and set
(423) W (={wd w}) = {ed g3} O
Then for n>0, assuming that u?, AT, g™, w® are known, we update them as follows:

Descent:

Solve

FReVxV; VzeVXV we have I(Wn-Vz + o7hz)dx =
Q

(4.24) {
i

(Vwh-Vz — k2w11}-z)dx + I(kag-z — %—(VPRWE'VFZ)C]I‘ - wa\l-zd'y,
I i

{4.25) FREA; YOEA we ha’ueJﬁn-Od'y = Jw{}ﬂd‘y,
Y Y
and then

EREVXV; YzeVXV we have J(VEEVZ + ogl-z)dx =

(4.26) { O
J (V¥ Vz — k550 z)dx + I(th?n-z - %{VrRtYn-Vrz)dI‘ + ﬂjﬁn-zd7,
Q Y

(4.27) —g'KGA; VueEA we have ﬂf@g-pd'y = — jyn-pdy.
Y it

Compute now

[(1ves? + atei®)ex + 5162y

~3

(428)  pp =2 )
.[(Vgﬁ-Vwﬁ + agﬁ-wg)dx + ﬂj@g-wgd'y
Q 7

and then

177
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(4.29) e R Wi, At pavh,
1 — 1 —
(430) @it =8 - puEd &} = &) ~ puEl.

Testing the convergence and constructing the new descent direction:

\1 ;.
If||8n+l"VxVX /\/"gOHVxVxASG, take u = un+1’ A=Atk ; if not compute

. Tn = nn2 Ty
g™ 1y xvx A
and
1 1 1 1
(4.32) {W{lH- ) W§+ } = {gg-l- ) gli+ } + 7n{W3’ Wl)t}- g

Do n = n+1 and go to (4.24).

4.4  TFinite Element Implementation of the Fictitious Domain Methodology.

In Sections 4.2 and 4.3 we have described a fictitious domain methodology for the solution of ‘
the Helmholtz equation. The finite element implementation of this methodology, and particularly of
the conjugate gradient algorithm (4.18)—(4.33), obeys essentially to the rules and principles described
in Section 2.4, concerning the solution of the Dirichlet problem (2.1), (2.2). This is particularly true
concerning the choice of the multiplier space Ay and the numerical evaluation of the various boundary

integrals over the physical boundary .

4.5  Numerical Experiments.

4.5.1 Generalities.

This section has to be understood essentially as a feasibility study, in order to obtain some

very preliminary information concerning the possibility of solving Helmholtz and ultimately Maxwell
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equations by fictitious domain methods. For example instead of Sommerfeld radiation conditions, we
have been prescribing Dirichlet conditions on the exterior boundary of the physical domain, Also, as
mentioned above, we have been using a (almost) brute force iterative method to compute the

approximate solutions. The test problems to be discussed concern the solution of the Helmholiz

equation
(4.33) Au + K2 =0 in w,
(4.34) u = g on yUT,

where, in (4.33), (4.34), we use the notation of Figure 4.1 (See Section 4.1). The methodology is the
one described in Sections 4.2, 4.3 and 4.4, in particular, the elliptic problems (of Dirichlet type) playing
the role of (4.19), (4.21) and (4.24), (4.26) in algorithms (4.18)—(4.33), are solved by a Fast Dirichlet
solver of cyclic reduction type. Incidently, we have taken o=0 and f=1 in the least squares
forrnulation (4.13). As test problems, we have considered the case where the obstacle A is a disk

(Section 4.5.2), an ellipse (Section 4.5.3.), and a double-ellipse (Section 4.5.4).

4.5.2 A first test problem: The disk case.

For this test problem, domain A is the disk centered at {0,0} and of radius 1/4; domain 9 is
the square (—1,1)x(—1,1). The Dirichlet boundary condition prescribed on 4 and T correspond to the

ezact solution
(4.35) u(xy,%9) = sin k(x;cosf + xgsinf),

where, in (4.35), 8 is an angle between 0 and 27. The above function is clearly a solution of (4.33),
and the angle § controls the incidence of the plane wave hitting A. A typical mesh used for the
fictitious domain ecalculation is shown on Figure 4.2; it corresponds to h = 1/32. The discrete
multiplier space Ay is defined as in Section 2.5.2. On Figure 4.3 we have shown the variation of the
discrete analogue of ”g“H«VX A/ ”gOHVx A versus n, when using a finite dimensional variant of the
conjugate gradient algorithm (4.18)—(4.32); this calculations corresponds to f=n/4, k=9 and
h=1/64. The chaotic aspect of this curve suggests that there is plenty of room for better iterative

methods and/or preconditioners. Indeed, it is worth mentioning the reorthogonalization procedure
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advocated by Roux in [35], in order to reduce the effect of round -off and truncation errors on

convergence of conjugate gradient algorithms.

Figures 4.4(a), (b), (c) show the variation of ||u—uh||L2 Q as a function of k for h=1
1/32 and 1/64, respectively. We observe with interest the sndden surge in the error, occurring at tl
values of k for which k2 is an eigenvalue of the discrete negative Laplace operator on Q, for
Dirichlet boundary conditions on I We also observe that these peak values decrease with h. T

4.1 displays, for k=9, and §=x/4, the error ||u-—uh[|L2( ) and the number of iterations versus h.
w

Figure 4.2
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h u—u Tteration
i h HL2 @)
Number
1/16 7.1x10°2 92
1/32 1.9x10°2 204
1/64 4.8x10738 101

Table 4.1 (k=9, 6=n/4)

It appears from Table 4.1 that our approximation is O(h2) and that the number of iterations
necessary to achieve convergence seems to be independent of h away from the resonances. Finally, still
for k=9 we have visualized on Figures 4.5(a), (b) the variations of u and u; for k=9, h=1/64, 0:21

along the horizontal and vertical diameters of A, respectively. The exact and computed results coincide

with a very high accuracy.
1.0

T pr———— p— — 7 Py

U, Uy

-1.0 PP A . .

-1.0 1.0
Figure 4.5(a) X,
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10 —_—

U,Us

1.0

-1.0
Xz

Figure 4.5(b)

4.5.3 A second test problem: The single ellipse case.

2
1

therefore 1/2 long, while the small one is 1/4 long; domain Q is again the square (—1,1)x(—1,1) as

For this test problem, domain A is the interior of the ellipse x +4x%=1/ 16; the great axis is

shown on Figure 4.6, together with a finite element grid corresponding to h=1/16. The exact solution
is still defined by (4.35). For k=9, #=x/4 and h=1/64 the conjugate residual shown on Figure 4.7

looks like very much the one on Figure 4.3; the same conclusions hold.

On Figure 4.8(a}, (b), (¢) we have shown the variation of fhay, ——u"LZ( : versus k for f=m/4
w

and h=1/16, 1/32, 1/64, respectively. The stopping criterion is defined (with obvious notation) by

n+1

@3l ea, / leglly, xa, <107



LAGRANGE MULTIPLIER APPROACH 185

Figure 4.6

10810(33)
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Figure 4.7
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P —eITOT

0.0

10

Figure 4.8(c)

100

We observe phenomena similar to those observed in Section 4.5.2 for the disk. Table 4.2,

below exhibits the same qualitative behavior than Table 4.1. The number of iterations necessary for

convergence is nevertheless higher; on the other hand the L2 errors are smaller and still O(hz).

h u— u Iteration
It h”L2 ()
Number
1/16 7.1x10°2 142
1/32 1.7x1072 221
1/64 4.4x107 152

Table 4.2
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Actually, of one replaces 1077 by 100 in (4.36) the iteration number may be substantially
reduced. If one plots the variations of uy, and u along the horizontal and vertical axes of the ellipse for

k=9, 6:;175 and h=1/64 once again we can not distinguish between approximate and exact solutions.

4.5.4 A third test problem: The double ellipse case.

For this test problem, domain A is the union of the interiors of the two ellipses whose

equations are given (see Figure 4.9) by

x2 + 4(xy — 3/16)% = 1/16 and x? + 4(x, + 3/16)% = 1/16.

The distances between the two ellipses is 1/8. Domain A has been imbedded in
(=1,1)x(—1,1) as shown on Figure 4.9, which also shows the finite element grid used for calculations
(here h=1/32). For k=9, #=7/4 and h=1/64 the conjugate residual shown on Figure 4.10 looks like
very much those on Figures 4.3 and 4.7. Table 4.3 shows the variations of ”uh_u”L2(w) and of the

number of iterations, versus h.
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rrrrr

vvvvvvvvv

5 I N
0 170
n
h u—u Iteration
l nll; 2 ()
Number
1/16 6.7x10°2 239
1/32 1.7x102 375
1/64 42x10°3 167
Table 4.3
‘The above table shows that once again |luy, —-uﬁLz( }:D(hg) and that the number of iteration
w

seems to decrease with h. Figures 4.11 to 4.13 shows (for k=9, #===/4, h==1/64) the variations of up

and u on different lines of the plane x10x2, namely the lines Xy =0, x2=0 and x2=3j 18, respectively.
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The coincidence between exact and approximate solution is {once again) excellent.
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1.0

U,
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Figure 4.13

5. Conclusion.

The Lagrange multiplier/fictitious domain methodology discussed in this article improves from
our point of view the closely related methodology discussed in [5] and [25]. The methods discussed here
are closely related to the capacitance matrix methods discussed in e.g. [36], [37] (see also the references
therein), with nevertheless more flexibility here concerning the use of the Lagrange multipliers. The
concept is fully validated for elliptic Dirichlet problems and looks promising for Navier-Stokes and
Helmoltz equations; progress however is still needed concerning better preconditioners. Application to

Neumann type problems is discussed in the companion paper [38].
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