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Abstract

In this paper we discuss a domain imbedding (fictitious domain) methods which is well suited
to the numerical solution of Neumann problems for Partial Differential Equations. The above method
includes a least squares formulation and is fairly easy to implement using finite element
approxirha.tions. We shall discuss first application to linear elliptic equations and then to the full
potential equation modelling compressible inviscid flow, including cases where the flow is supersonic in
the far field. Numerical results validating the above approach are given, and show that the method is

robust, accurate and easy to implement.

1. Introduction and Synopsis

This article can be considered as a sequel of a lecture given at the Fourth International
Conference on Domain Decomposition Methods for Partial Differential Equations. It was shown there
that least squares and finite element methods can be combined to domain imbedding (i.e. fictitious
domain) techniques to solve efficiently Newmann problems in domains of (almost) arbitrary shape.
This method which has some commonality with the methods described in {1] is not without
complication, particularly while computing accurately the various integrals associated to the present

approach which is based on variational principles.
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Basic fictitious domain methods for elliptic problems are discussed in e.g. [2], [3], [4] (see also

the references therein); application to transonic flow by related methods is discussed in [5].

In the present paper we shall discuss first (in Section 2) the application of a domain imbedding
method to the solution of Neumann problem, for linear elliptic equations, and then generalize (in
Section 3) the methodology to a class of much more complicated problems, namely the numerical
solution of the full potentiall equation modelling the potential transonic flow of compressible inviscid

fluids, including test cases for flow supersonic at infinity.

2. A least square domain imbedding method for linear Neumann problems.

2.1 Formulation. Generalities.

Motivated by the solution of Neumann problems occurring in applications such as Fluid

Dynamics and Petroleum Engineering we consider the following problem

(2.1) —V-AVa + agu = f in w,

(2.2) AVu-n = g on 7.

In (2.1), (2.2), w is a bounded domain of Rd(dz 1) and v is its boundary; the functions f and

g are given and defined over w and 7, respectively; vectors V and n are {ai}fl_l and the unit
x. J1=

outward normal vector at v, respectively, and a-b= Z al i Va_{ }1_1, bz{bi}g:__l; finally a, and

i satisfy the following conditions:
2.2) 3o €L®(w), ag > 0 4. e. on w,

2 =
(2.3) Ae(Lm(w))d A ()€€ > c €% a e onw, VEeRY,

d
with (in (2.3)) ¢>0 and 15;2=El &, ve = {gi};i:l
i=
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It follows from, e.g., [6, Appendix 1] that problem (2.1), (2.2) has a unique solution in H 1(m) if
ao7#0 and if f and g are sufficiently smooth (if ag=0, problem (2.1), (2.2) has a unique solution

defined within to an additive constant if and only if

(2.4) dex + jgd*/ =9,
w Y

with dx=dxy, ..., dxg). It follows from [6] that (2.1), (2.2) is equivalent to the following veriational
problem
en |

UGHI(“’)i

J(%uv + iVu-Vv)dx = vadx + ngd-y, VveHl(w).
w w v

2.2 A fictitious domain approach to the solution of problem (2.1), (2.2).

Let us imbed domain w in a “box” §, with boundary T, as shown in Figure 2.1 below.

Figure 2.1 (imbedding of w in Q)
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Next we introduce V such that
(2.6) V is a closed subspace of HI(Q),
(2.7) V] = Hi(w).
Natural candidates for V are Hl(Q), H},(Qt) and the space HIl,(Q) defined by

(2.8) H%,(Q) = {v]vEHl(Q), v periodic at l"}.

Problem (2.1), (2.2), (2.5) is clearly equivalent to

(2.9) I(ayz + Vy-Vz)dx = I(iVu-Vz + aguz)dx — szd_x - ngd—,, VzeV, yev,
) w w ¥

(2100  y =0,
in the sense that if a function uEHl(w) verifies (2.9), (2.10) it is clearly the solution of (2.5), and

conversely (in (2.9), @ has to be positive if V=H1(Q) or Hllj(ﬂ); it can be taken equal to zero if
V=H{(Q))-

Problem (2.9), (2.10) has the following block structure
Ay +Bv=5b
(2.11) {

y=20

where, in (2.11), A€2(V, V), BeL(HL(w), V'), beV'. Since V]|, =H(w), we can take BEL(V, V)
in (2.11); we use this alternative possibility in (2.12), below.

To solve problem (2.9}, (2.10), we can use the following least squares formulation

2.12 Min_ J(v),
(212) M J()
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i where, in (2.12), J(v) is defined as follows:

@13 30 =} | (alvi? + vy,
Q

with y(=y(v)) the solution of

yev,
(2.14)

J(ayz + Vy-Vz)dx = J (in-Vz + agvz)dx — szdx -~ Igzd‘y, VzeV.
) w w ¥

Remark 2.1: Problem (2.12)—(2.14) has the structure of an Optimal Control Problem in the sense of J.

L. Lious [7]; here v is the control variable and y is the state variable.

Remark 2.2: In the above formulation we have taken the control and state functions in the same space

V. Actually, this is not necessary as long as the conirol space restricted to w coincides with Hl(w).
Remark 2.3: A main motivation of the fictitious domain approach is that it allows the use of fairly

structured meshes in the box (, allowing therefore the use of fast solvers, like those based on cyclic

reduction (see references 8 to 14 in the companion paper [1]). O

Concerning the well posedness properties of problem (2.12) we can prove easily the following

Theorem 2.1: Problem (2.1) has a unigue solution in the quotient space V/%o, where the equivalence

relation R, is defined by

{2.15) VRhw & v =wonw.

This solution restricted to w coincides with the solution of (2.1), (2.2), (2.5) and the corresponding

value of y is zero.
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In the following paragraphs we shall discuss the conjugate gradient solution of problem (2.12)
— (2.14).

2.3  Conjugate Gradient Solution of the Least Squares Problem (2.12)—(2.14).

The conjugate gradient algorithm that we apply to the solution of (2.12)—(2.14) is the

following (classical) one:

(2.16) uCeV is given.
Solve

g’ev,
(2.17) {

j(agoz + Vg°.Vz)dx = <I'(u®), 2>, VzeV,
Q

and set

(2.18) wl=g% O

Then for n>0, u?, g, w? being known, compuie un+1, gn+1, wn+l as follows:
Solve

PnER,
(2.19)
I — ppw®) < Ju™ — pwP), VpeR,

and compute

(2.26) FLp S . vt
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Solve

1
gn+

(2.21) {
J,

€v,

(cg®z + VL. va)dx = <3y, 2>, Vaev.

I 18" lly /116°1ly <e take u=u"*"; if not, compute

+1,2
el
(2.22) o = ——s,
lle™ly
and then
(223) Tl .m0

Don=n+1 and go 10 (2.19). 0O

In {2.16)—(2.28), <-, -> denotes the duality pairing between V! and V and Hv”v is defined
by

(2.24) ||v||%=j(av2+|Vvl2 )dx.
2

Concerning J'(v), we can easily show that

(2.25) <@, w> = I (KVw-Vy + apyw)dx, Ywev,

w

where, in (2.25), y is the solution of (2.14).

Taking (2.25) into account, and also the fact that the mapping v—1'(v) is affine from V into
V’ algorithm {2.16)—(2.23) can be written in the following {more practical) form:

(226)  wlev;
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solve
y°ev,
(2.27) {
J(ayoz + Vy°.Va)dx = J(iVuo-Vz + agu¥sz)dx — szdx — ngdy, VzeV,
Q w w 7
and then
g°ev,
(2.28)
I(agoz + Vg®.Va)dx = j(in-Vyo + aoy°z)dx, Vz€V,
Q W
and set

(2.29) wl=g¢g% O

Then, for n>0, assuming that u®, y&, ¢®, wl are known we compute un+1, yn'}'1 g

wn""1 as follows:
Solve

yhev,
(2.30) {

J(a?nz + V¥ Vz)dx = I(KVW“-VZ + aowhz)dx, YzeV,

Q w
and then

g'ev,
(2.31)

[(e7™s + Ve Vaax = [(RVsv5® + aoyPa)ix, vaev,
Q w
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Compute now

2
le" I
(2.32) pn = - y ,
ag"w" 4+ VgR.Vwh)dx
g
Q
and then
(2.33) Wt o u® ~ ppwh,
@3 yPHlopm_ e
(2.35) gn+1 =g" — puE™.

If||gn+1”V/[|g°|[V < ¢ take u=un+1; if not compute

n+l,92
(2.36) Tn = "iﬁ—l'l'y,
Jlg ”V
and then
(2'37) wn+1 = gn+1 + 7nWD' |n}

Do n=n+1 and go to (2.30).

Remark 2.4: Due to the least squares approach, another natural stopping criterion is defined by

" iy, / liy°lly < e

since [jy™ HV is the square root of the least square residual that we are trying to force to vanish.

For more information about least squate methods we recommend the review paper by A.

Bjorck [8].
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2.4  Finite Element Iruplementation of the Imbedding Method.

Let V) be a finite dimensional subspace of V. We approximate the least squares problem
(2.12)—(2.14) by

(2.38) Min_ Jp(vy),
where, in (2.38), J; (v},) is defined as follows

(@39 () = §f (el 2 + 199, P,
Q

with yh(=yh(vh)) the solution of

Yhevh1

(2.40)
J(ayhzh + Vyh-Vzh)dx = J(KVvh-Vzh + agvyzy Jdx — szh - nghd'y, Vzy €Vy.
Q w w v

From a numerical point of view the main issue is the ability to compute easily and accurately

the various integrals occurring in the right hand side of the variational equation in (2.40).

In the particular case of finite element approximations it seemns essential that the singular

points of v coincide with vertices (or edges) or the finite element mesh.

The least squares problem (2.38)—(2.40) can be solved by a conjugate gradient algorithm
which is a simple finite dimensional variant of algorithm (2.26)—(2.37).

2.5  Numerical Experiments.

We consider the particular case of problem (2.1), (2.2) defined by

{2.41) —Au +u="Tinw,
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(2.42) M —gony,

with w=(.25, .75)2. The data f and g have been determined in such a way that the solution of (2.41),
(2.42) is given by

(2.43) u(xy, Xg) = sin 27x; sin 27X,

Domain w has been imbedded in Q:(O,l)2 as shown in Figure 2.2, which also shows a
particular finite element triangulation used for our calculations (on Figure 2.2 we have h=1/4).

Problem (2.1), (2.2) has been solved using the methodology described in Sections 2.2 to 2.4.
4

X3

Figure 2.2

In the following Table 2.1 we give the number of iterations necessary for convergence with

¢=10""and the error oy, —u}|co versus h.
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h Tteration number | fluy —ulloo

'18 5 1.80

il?i 9 46

& 12 30x107L
Table 2.1

From this table we observe that the approximation is O(h2) and that for h sufficiently small

the number of iterations is independent of h (indeed the L2 —errors are much smaller).

In the following Section 3 we shall generalize the methodology discussed in this section to the

numerical solution of a much more complicated nonlinear problem.

3. Fictitions Domain Methods for Transonic Potential Flow Calculations.
3.1  Generalities.

In this section, which is largely inspired by [9} we (briefly) consider the solution of a Neumann
problem for an operator which is not only nonlinear but also of mized iype, namely elliptic-hyperbolic,
if some data is sufficiently large; these problems occur in the simulation of transenic poieniial flow for
inviscid compressible fluids. f one takes an historical perspective, it is known that rectangular grids
were used for the simulation of flow around bodies, and interpolation procedures were needed to take
into account the body surface. Body-fitted meshes combined to conservative difference schemes have
been a substantial improvement leading to accurate solutions for the Enler and Navier-Stokes equations
simulating a large variety of fluid flows. However, real life flows are mostly around complex

geometrical configurations and the task of generating a body-fitted mesh, either structured or
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unstructured, can be very time-consuming and computer-intensive. Moreover, in the case of unsteady
flow involving moving structures, remeshing is needed and can lead to an important increase in
computer time. Generalizing Section 2, and following [9], we describe a fictitious domain finite
element /least squares method which uses a cartesian grid (at least locally around the body) to simulate
transonic potential flow. Numerical experiments will include flow with a nonzero angle of attack,
which, in addition, are supersonic at infinite. It has to be understood that these calculations are really
preliminary and the results were obtained very shortly after the methodology presented in Section 2

was introduced.

3.2  Mathematical formulation.

We consider the potential flow of a compressible inviscid fluid around the airfoil A shown in

Figure 3.1, below.

— m'llll»

Figure 3.1

We denote by T' A the boundary of A and by w the flow domain rd /A. If the flow is potential
it is modelled by

(3.1) —~V-{pVp) =0 in v,

7]
(3.2) pa—(s = 0 on I‘A,
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(3.3) Vi = ueq al infinily,
- _1=1 |Vell\1/(+1)
(3.4) P = po (1 7 2 ) .

In (3.1)—(3.4), the potential ¢ and the velocity u are related by
(3.5) u = Vp,

Po is the fluid density at rest, v is the ratio of specific heats (y=1.4 for air) and C, is the critical
velocity. Relations (3.1)—(3.4) have to be completed by entropy and Kutle-Joukowsky conditions (see,
e.g., [11]—[13] for details). Following the above references we bound the physical space by a large

artificial boundary o, on which we prescribe
d
(3.6) P% = Pooloo oo

- 2\1/(y-1 ,
7=1 [ucol ) /(1) and where ng, is the unit outward normal vector at '

where Poo=/’o(1 ~ 371 —(—)‘_?-_
*
(see Figure 3.2).

— 'lllllllllm»

Neo

Figure 3.2
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We still denote by w the “truncated” flow domain.

3.3 A fictitious domain/least squares formulation.

Following Section 2 (and also [§] — [12]) we associate to problem (3.1)—(3.4) the following

(nonlinear) least squares/domain imbedding problem
3.7 Min__ J(v),
61 Min I

where, in (3.7), with Q=interior of closure of AUw,

68 W =} @+ vy,
Q
(3.9) J (ayz + Vy-Vz)dx = Jp(v)Vv-Vzdx — f gzdy, Vz€V,
0 w I'yUloo

with g=0 on Ty, 8=pPoolloo Do 0N Teg.

In practice we have to include in the above formmlation entropy and Kuite-Joukowsky
conditions to eliminate nonphysical solutions; the implementation of these two conditions is discussed
in [10])—[12] together with their finite element implementation. Indeed space V in (3.7)—(3.9) is a
subspace of HI(Q), well suited to piecewise linear finite element approximations. Another approach,
which is advocated in [9], is to use a combination of Newion’s method and GMES algorithm (see [13])

to solve the system

J p(uy )Vuy -Vzy dx — j gzdy, Vz€Vy,
(3.10) w Too
u th,

where, in (3.10), Vy, is a well-chosen finite element space, This formulation has the advantage of being
applicable to flows which are supersonic at infinity through nonsymmetric indefinite preconditioning
operators reflecting the dominating hyperbolic character of the operator V-plp) Ve (see [9] for further

comments).
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3.4 Numerical results.

A1l the test problems considered here correspond to transonic potential flow around a NACA

0012 airfoil. Three test cases have been considered corresponding to Meo=.8, .95, 1.2 and «=1%, 0, 2’,

respectively (a: angle of attack). These test cases are interesting since they correspond to lifting

situations and large supersonic regions. The fictitious domain results have been compared to finite
element ones based on body-fitted triangulations.

First Test Problem: We have Moo=.8 and a=1". Part of the finite element mesh used for the

fictitious domain approach (resp. the comparison calculation) is shown on Figure 3.3 (resp. Figure 3.4).

Piecewise linear approximations have been used for both calculations. Figures 3.5 and 3.6 show the

Mach contours for the fictitious domain and comparison calculations, respectively. Similarly with
Figures 3.7 and 3.8 for the pressure contours. A comparison between Mach and pressure distributions
on the airfoil is shown on Figures 3.9 and 3.10, respectively. The fictitious domain results have been

obtained after twenty iterations corresponding to computational time of 3.5 minutes on an IBM 3090
computer. Present and Reference solutions agree quite well.
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Figure 3.3

Fictitious Domain Method Triangulation (1937 vertices, 3836 triangles)
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Figure 3.4
Part of the Comparison Calculation Triangulation (3114 vertices, 6056 triangles)

Figure 3.5

Fictitious Domain Calculation: Mach Distribution (Moo =.8, a=1")

467
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Figure 3.6

Comparison Calculation: Mach Distribution (Moo =.8, a=1°)

T T

Figure 3.7
Fictitious Domain Calculation: Cp Distribution (Moo =8, a=1")




LEAST SQUARES/DOMAIN IMBEDDING METHODS

Figure 3.8

Comparison Calculation: Cp Distribution (Meo=.8, a=1")

Mach distribution

1.8

1.6

0.6

0.4F

0.2}

+ Reference! solution

i I

........ NAC, AO:OI' ——— ! - Present solution_____|

0 0.5 1 1.5

Figure 3.9
Mach Distribution Comparison (Mo =.8, a=1")
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Pressure distribution

1<
R
0.5
+
0 -
t f
1 . — r —
; P+ Refe rence solution
. Preseint solution
0 0.5 1 15 2

Figure 3.10

Pressure Distribution Comparison (Mg =.8, a=1")

Second Test Problem: We have Moo, =.95, =0, The finite element grids used in this test case are

those of Figures 3.3, 3.4. On Figures 3.11 to 3.13 we have shown and compared the results obtained by
the fictitious domain approach and by the body-fitted finite elemnent approximation.

For this fully transonic case the agreement between both calculations is still quite good.

Figure 3.11

Fictitious Domain Calculation: Pressure Distribution (Moo=.95, a=0°)
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A

/!

Figure 3,12

Comparison Calculation: Pressure Distribution (Mgo=.95, a=0")

155 02 Y Y3 08 1

Figure 3.13

Pressure Distribution Comparison (Mg =.95, a=0")
(x: fictitious domain calculation; ++: comparison calculation)

471
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Third Test Problem: We have My,=1.2, @=2". The finite element grids used in this test case are

still those of Figures 3.3, 3.4. This case is more difficult than the above two since it concerns a
transonic flow supersonic at infinity. On Figures 3.14 to 3.16 we have shown the results obtained by

the fictitious domain approach and by the body-fitted finite element approximation.

Figure 3.14

Fictitious Domain Calculation: Pressure Distribution (Mgo=1.2, a=2")

Figure 3.15

Comparison Calculation: Pressure Distribution My=1.2, a=2")
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Figure 3.16

Pressure Distribution Comparison (Moo =1.2, @=2")

(x: fictitious domain calculation; +: comparison calculation)

From the above three test cases we can say that we have a fairly good agreement for the nomal
shocks, the two oblique shocks and the bow shock. However, further refinement seems needed at the

trailing edge, particularly for cases 2 and 3 where shocks are located there.

4. Conclusion

We have introduced here a fictitious domain methodology for partial differential equation
problems with Neumann boundary conditions. From the results obtained with the compressible flow
problem discussed in Section 3, we can say that the method looks promissing. It is much easier to code
than a finite element method using a body fitted mesh. Indeed the method described in this article is

still in its preliminary phases, and we can expect various improvements.



474 DEAN ET AL.

Acknowledgment

We would like to acknowledge the helpful comments and suggestions of the following
individuals: C. Atamian, L. C. Cowsar, C. De la Foye, G. H. Golub, P. Joly, Y. Kuznetsov, A. Latto,
W. Lawton, P. Le Tallec, J. L. Lions, P. L. Lions, G. Meurant, J. Pasciak, M. Ravachol, H. Resnikoff,
H. Steve, J. Weiss, R. O. Wells, M. F. Wheeler, O. B. Widlund.

The support of the following corporations or institutions is also acknowledged: AWARE,
Dassaunlt Aviation, INRIA, University of Houston, Université Pierre et Marie Curie. We also benefited
from the support of DARPA (Contracts AFOSR F49620-89-C-0125 and AFOSR-90-0334), DRET
(Grant 89424) and NSF (Grants INT 8612680 and DMS 8822522). Finally, we would like to thank
J. A. Wilson for the processing of this article.

References

1 Q. V. DINH, R. GLOWINSK]I, J. HE, V. KWOCK, T. W. PAN and J. PERIAUX, Lagrange
Multiplier Approach to Fictitions Domain Methods: Application to Fluid Dynamics and
Electro-Magnetics (these Proceedings).

[2] W. PROSKUROWSKY and O. B. WIDLUND, On the numerical solution of Helmholtz
equation by the capacitance matrix method, Math. Comp., 30, (1979), pp. 433-468.

[3] D. P. O’LEARY and O. B. WIDLUND, Capacitance matrix methods for the Helmholtz
equation on general three-dimensional regions, Math. Comp., 30, (1979), pp. 849-879.

[4] G. I. MARCHUK and Y. A. KUZNETSOV, A. M. MATSOKIN, Fictitious domain and domain
decomposition methods, Sov. J. Num. Anal. Math. Modelling, 1, (1986), pp. 3-35.

[5] D. P. YOUNG, R. G. MELVIN, M. B. BIETERMAN, F. T. JOHNSON, S. S. SAMANTH, and
J. E. BUSSOLETTI, A locally refined finite rectangular grid finite element method.
Application to Computational Physics, J. Comp. Physics, 92, (1991), pp. 1-66.

i6} R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New
York, 1984.

[71  J. L. LIONS, Conirale Optimal des systémes gouvernés par des équations auz derivées
partielles, Dunod, Paris, 1969.

[81  A. BIORCK, Least Squares Methods, in Hendbook of Numerical Analysis, Vol. 1, P. G. Ciarlet,
J. L. LIONS, eds., North-Holland, Amsterdam, 1990, pp. 465-652.

191 Q. V. DINH and J. W. HE, A Cartesian grid finite element method for potential flows, in High
Performance Computing 11, M. Durand, F. El Dabaghi eds., North-Holland, Amsterdam, 1991,
Pp. 295-306.



[10]

(11]

(12]

[13]

LEAST SQUARES/DOMAIN IMBEDDING METHODS 475

M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER and G. POIRIER, Transonic
flow simulations by finite element and least square methods, in Finite Elements in Fluids,

Vol. 4, R. H. Gallagher, D. H. Norrie, J. T. Oden, O. C. Zienkiewicz, Wiley, Chichester, 1982,
pp. 453-482.

M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU and G. POIRIER, On the
numerical solution of nonlinear problems in fluid dynamics by least squares and finite element
methods (II). Application to transonic flow simulations, Computer Methods in Applied
Mechanics and Engineering, 51, (1985), pp. 363-394.

M. O. BRISTEAU, R. GLOWINSK]I, J. PERIAUX, P. PERRIER, O. PIRONNEAU, and

G. POIRIER, Transonic Flow and Shock Waves: Least-squares and Conjugate Gradient
Methods, in Section 4.3 of Part 3 of Finite Element Handbook, H. Kardestuncer, D. H. Norrie
eds., McGraw-Hill, New York, 1987, pp. 3.229 - 3.243.

Y. SAAD and M. H. SHULTZ, GMRES: A generalized minimal residual algorithm for solving
non symmetric linear systems, SIAM J. Sci. Stat. Comp., 7, (1986), pp. 856-



