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Non-Oscillatory Spectral Element Chebyshev Method
for Shock Wave Calculations
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Abstract. A new algorithm based on spectral element discretization and non-oscillatory ideas
is developed for the solution of hyperbolic partial differential equations. A conservative formulation
is proposed based on cell averaging and reconstruction procedures, that employs a staggered grid of
Gauss-Chebyshev and Gauss-Lobatto-Chebyshev discretizations. The non-oscillatory reconstruction
procedure is based on ideas similar to those proposed by Cai et al in [2] but employs a modified
technique which is more robust and simpler in terms of determining the location and strength of
a discontinuity. It is demonstrated through model problems of linear advection, inviscid Burgers
equation, and an one-dimensional Euler system that the proposed algorithm leads to stable, non-
oscillatory spectrally accurate results away from discontinuities.

1. Introduction. Spectral element methods are high-order weighted residual
techniques for the solution of partial differential equations typically encountered in
fluid dynamics [9], [7]. Their success in the recent past in simulating complex flows
derives from the flexibility of the method in representing accurately non-trivial ge-
ometries while preserving the good resolution properties of spectral methods [6]. In
these simulations, however, both the geometry and the solution are described through
smooth functions so that spectral element methods can obtain exponential accuracy
by fully exploiting that regularity. There are numerous fluid dynamics applications
however, where either very steep gradients or even jump-discontinuities are present
e.g. interfaces in multiphase flows, flame fronts, or shocks in compressible flows. A
straightforward application of high-order numerical methods in these situations is not
possible, as large errors induced by the discontinuity (Gibbs phenomenon) propagate
in the domain and eventually render the solution with oscillations everywhere.

One approach to succesfully simulating the aforementioned complex flows is to use
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essentially non-oscillatory pseudospectral schemes developed for systems of hyperbolic
partial differential equations

(1.1) u; + f(u), =0

(see [2] for the case of Fourier method). The main idea is to augment the spectral
space by adding a non-smooth function, representing discontinuity. A conservative
scheme can be obtained by defining cell averaged quantities in following the work
of Cai et al. for Chebyshev methods [1]. A staggered grid of Gauss-Chebyshev
and Gauss-Chebyshev-Lobatto collocation points is employed to accomodate the cell
averages and point values. Point values are obtained from cell averages by using
appropriate reconstruction procedure (possibly essentially non-oscillatory).

Although very accurate, the non-oscillatory spectral methods described in these
previous works are limited to computational domains with highly regular nodal point
distribution (and also periodic for Fourier method). In the current, work we attempt
to relax these constraints by substituting for the higher-order scheme a spectral el-
ement method {9], [7]. In the spectral element discretization the computational do-
main is broken into several subdomains (macro-elements) whithin which data and
unknowns are represented as spectral expansions in terms of general eigenfunctions
- solutions of the singular Sturm-Liuville problems, i.e. Chebyshev polynomials, Le-
gendre polynomials, etc. The discrete equations are derived via variational state-
ments, so that the unknowns at each node represent values of the unknown field
variable. This approach and its variants [6],{11],{8] results in exponential (spectral-
like) converegnce for infinitely smooth solutions.

The main idea presented in this work is to modify the Chebyshev Lagrangian in-
terpolant basis of the spectral element formulation by adding a non-smooth function,
representing discontinuity. A new robust and efficient technique is also proposed for
estimating the discontinuity location and strength. As a resuit the proposed non-
oscillatory reconstruction procedure implemented on a staggered Chebyshev spectral
element grid leads to stable solutions free of oscillations. The incorporation of a high-
order filter [14] results in recovering spectral-like accuracy away from discontinuity.

The paper is organized as follows: In Section 2, we introduce the basic ideas
upon which our conservative spectral element formulation is based (cell averaging
and reconstruction procedures). In Section 3, the non-oscillatory cell averaging and
reconstruction are presented. In Section 4, we describe model problems used in this
work together with some additional aspects of reconstruction (interfacial constraint).
In Section 5, we describe the entire algorithm and briefly review its components (time-
marching scheme, filter, flux limiter). Finally the results are presented in Section 6,
followed by a brief discussion in Section 7.

2. Cell averages and reconstruction: smooth function.

2.1. Cell averages. In the general case that we consider in this work the nodal
points are distributed in a non-uniform manner and thus we need to define appropriate
cell averaged quantities. In particular, adopting the terminology explained in Fig.2.1
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the cell averaged velocity 4, is given by,

1 =;
(2.1) ;= a2y, 1) = ———— / ™ (z, t)da
:E,l:-l- —_ mi—- wi_.

Given this definition, equation (1) can be integrated along a cell extending from 2~
to it as follows,

du; N flue) — flu;-) -

(2'2) di Am_.,- 0
where we have also defined
(23) Aa:_., = ZB?:-{- ~— :E?:.-.

The above equation therefore suggests that the fluxes f(u) should be evaluated at
the ends of the cell using de-averaged (reconstructed) velocity values; this formulation
leads to the conservative (or flux) form of the semi-discrete wave equation.

In the following, we define cell averaged quantities for two particular discretizations:
first, spectral (Chebyshev) discretizations; and second, spectral element (Chebyshev)
discretizations. Proceeding with the first case we refer to Fig.2.1 where the set of
points j at which cell averaged quantities are defined are simply the midpoints o1 the
cell.

A spectral-Chebyshev expansion corresponds to a non-uniform distribution of points
with cells of variable size Az;. Following the formulation of Cai et al [1] we select
the set of points j to be the Gauss-Chebyshev points (see Fig.2.2) defined by,

(2.4) z; = cos((j — 1/2)Ad) where Af=x/N and 1<j;<N
while the end points 21,7~ of each cell are the Gauss-Lobatto points defined as
(2.5) z; = cos(zA8) 0<i<N.

Using these two sets of points and the definition (2.1) a Chebyshev spectral expansion
then of the form,

N
(2.6) u(z) = axTi(z)

k=0

after averaging becomes,

N
27 a(z) =Y ax Ti(z)

k=0
where the cell averaged Chebyshev polynomial is given by,
(2.8) To=1
(2.9) T, = LouUi(z)

-~ 1
(2-10) Tk = 5[01,{]];(:3) - Uk_ng*g(:z:)} Yk 2 2
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Cell

Fig. 2.1. Cell average and point values.

where

sin(k + 1)42

(2.11) op = m,

Here we have introduced Ux(z) = g1y T%41(2) to be the second kind of the Chebyshev
polynomials.
In the spectral element discretization the domain is broken up into several macro-
elements (Fig.2.3) within which the velocity is expanded in terms of Chebyshev poly-
nomials; C° continuity is imposed at the elemental boundaries.

Here, we establish the connection between the local (elemental) reference system
and the global (physical) coordinate system. For the set of Gauss-Lobatto-Chebyshev
points their local coordinate in the k-th element is given by,

(212) = cos(%) 0<i<N

which are related to the global coordinate z through the equation

Lk zk +$k
(213) T = -2—?'k + -—é—é—!’i;

here =% and «% denote the left and right coordinate of the elemental boundaries.
The interpolant of u(z) in the k-th element is then represented as,

N
(2.14) () = L bl

Here, u¥ are nodal values of u, and h; are shape functions corresponding to element &
and node i, with property hi(r¥) = &;; is the Kronecker-delta symbol. Expressions for
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A6= /N

. it 1<£isN
% = —cos(in/N) i": 0sisN-1
x, = —cos((j+0.5)m/N) j: 0jsN-1

Fic. 2.2. Speciral Chebyshev method. The set of points j defines the cell averaged guantities,
while the potnt values © are used in evaluaiing the fluzes.

these Lagrangian interpolants (as well as for their derivatives) in terms of Chebyshev
or Legendre polynomials can be found in [5].
Therefore, in the k-th element an expansion of the form

N
(2.15) uk(z) = Y ubhi(z)

1=0
defined on the Gauss-Lobatto-Chebyshev points after the application of the averaging
operator takes the form

N _
(2.16) #(z) = 3 vthi(a)

=0

where u¥ are the point values for element k and z refers to the local coordinate;
hi(z) and hi(z) are the Gauss-Lobatto-Chebyshev-Lagrangian interpolant and its
corresponding cell averaged function obtained from,
(2.17) hi(a) = 23 L T(e)T(z) 0<i< N

Noege TP T

9 X

(2.18) W(o) = 2 2 Tledl(e) 0<i< N

where ¢, = 1 if n # 0,N and ¢, = 2 otherwise. In matrix form the above cell
averaging procedure can be written as,

(2.19) A =Akuf 0<i<N 0<j<N
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k-1 k k+1

A

K(N—1)+1
< R(N~1)

Fia. 2.3. Speciral element Chebyshev discretization. J’s are used for global indezing of cell
averaged quantities and I’s - for global indezing of point values.

where the cell averaging matrix is defined as A% = hi(z;); here z; refers to local
coordinate. Based on the nodal cell averaged values obtained from (2.19) the corre-
sponding polynomial can be constructed using Lagrangian interpolation, i.e.

N
(2.20) a(z) = 3. a*01(a)
J=1
where the Gauss-Chebyshev-Lagrangian interpolant is given by,

TN(:z:)

— &

(2:21) gi(z) = (— 1),+1 1<j<N

Having constructed a cell averagihg procedure for the spectral element discretization
we proceed next with the inverse operation of de-averaging and recovering point values
for the evaluation of fluxes in equation (2.2).

2.2. Reconstruction and point values. The reconstruction operation can
also be put into matrix form. We consider first the polynomial describing the cell

averaged values,

(2.22) u(z) = Z t9i(a)-

i=1
An alternative to (2.21) expression for the Gauss-Chebyshev-Lagrangian interpolant
is the following,

N-1

(2.23) g;(z) = Z N‘ To(2:) ().

p=0
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We can also express the g;(z) in terms of the second kind Chebyshev polynomials; to
this end we recall that,

(2.24) Tya) = {Us(e) ~ Up-ala)] Vo2 2

Using the above equation we can rewrite g;(x) as follows,

(2.95) @)= 3 Noyly(z) 1<5<N.
=
Here we have defined:
(2.26) X = th w(z;) for p=N-2,N—-1
(2.27) X = —}\T[Tp(:r,_.,-) —Tyia(a)] for 0<p<N -3

The interpolating polynomial corresponding to point values (Gauss-Chebyshev-Lobatto
points) can then constructed using the de-averaged Lagrangian interpolants G; as fol-
lows,

N
(2.28) u(z) = Y 4:Gj(z).

=1

The cell averaged second kind Chebysev polynomial is obtained using the definition
of equation (2.1) (see details in [1]):

(2.29) Up(2) = opUp(z)

with o, obtained from equation (2.11). To determine G;(z) therefore we consider
{2.28-2.29) and (2.22-2.25) and thus we obtain,

N—~1 117

(2:30) 6i(s) = - 2U,(a).

=0 ~ P

To recover the point values u; we simply set # = z; in the interpolating polynomial
u(z). In matrix form the reconstruction procedure (on elemental level) can be written
in the form,

(2.31) w=gha; for 1<j<N; 1<i<N
where
(2.32) 93 = Gj(=3)-

Based on these N point values the interpolating polynomial u(z) can then be con-
structed from equation (2.28). This local reconstruction procedure is then repeated
for all elements. To form a global interpolating polynomial however we need to impose
a continuity condition at elemental interfaces as we explain in the next Section.
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2.3. Interfacial constraint. The interpolation polynomial u(z) constructed
based on the Gauss-Lobatto-Chebyshev points is of degree N while the polynomial
we obtain from the reconstruction procedure is of degree (N — 1). The additional
information needed to uniquely define u(z) comes from requiring continuity of the
solution at the interfacial nodal points. For the k-th element for example we require
that its rightmost nodal value and the leftmost nodal value of element (k + 1) will
be equal (say, to some value u,). This can be accomplished for (k + 1)-th element by
adding an extra term to the (N — 1)-th order polynomial, as follows

k1 A o 5ut
(2.33) ur) = Zluj Gi(r)+(1- T)TN(T)EN_E’
J::
where §u* can be defined by
N
(2.34) Sub = u, — 3 akG(-1).

=1

Here the coordinate r € (—1,1) refers to the local element coordinate (see Sec.2.1).

Note that the expression (1—r)T4(r) attains zero values at all the Gauss-Lobatto-
Chebyshev points of the (k + 1)-th element except the leftmost one. Therefore,
implementing (2.33),(2.34) is equivalent in practice to requiring only the leftmost
point value to be equal to u,. The rest of the point values of the (k + 1)-th element
remain unchanged. The same will be true for the k-th element and its rightmost point
value.

The only undetermined quantity is u,. The value of u, should be set either to

1 T G(—1) or to YN, 45G;(1) depending on the direction (ie. sign of the
advection velocity) of the problem. We will elaborate on this point in Section 4.

3. Cell averages and reconstruction: discontinuous function. The main
difficulty in applying spectral methods to disconiinuous problems is the Gibbs phe-
nomenon. If a discontinuous function is approximated by a spectral expansion { Cheby-
shev, Fourier etc.), the approximation is only O(1/N) accurate in smooth regions and
contains O(1) oscillations near the discontinuity. When spectral methods are applied
to partial differential equations with discontinuous solutions, the Gibbs phenomenon
may also lead to numerical instability.

An interesting approach to construct a non-oscillatory spectral approximation to
a discontinuous function has been recently proposed in [2]. Let u{z) be a piecewise
C> function with a jump discontinuity at point =, and with a jump [4}.,. The key
idea in [2] was to augment the Fourier speciral space with a saw-tooth function. It
was shown that the approximation using the augmented spectral space will be non-
oscillatory if the saw-tooth function approximates the magnitude and the location of
the discontinuity with second order accuracy. In addition, a method for estimating
the discontinuity parameters with specified accuracy based on the spectral expansion
coefficients was suggested. More recently, it was pointed in [3] that a first order accu-
rate approximation of discontinuity magnitude also leads to non-oscillatory behavior.
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Numerical experiments with discontinuous solutions using the Chebyshev spectral
space augmented by a step function and cell averaging approach were reported in [1].
Here we extend this approach to the context of the spectral elements. In addition,
we present a very simple and reliable method which allows the estimation of the
discontinuity parameters with an accuracy required for obtaining a non-oscillatory
approximation.
In this Section we denote for simplicity the entire array of cell averages defined
- at the Gauss-Chebyshev points (see Fig.2.3) (regardless of which element they belong
to) by 4y

gy, for ISJL< K- (N-1),

where K is the number of spectral elements covering the domain and N the number
of Gauss-Lobatto-Chebyshev points in each element. We also denote by u; the entire
array of point values defined at the Gauss-Lobatto-Chebyshev points (as shown in
Fig.2.3), i.e.

ur, for 0<I<K-(N-1)+1

3.1. Reconstruction of point values. We assume that the cell-averaged val-
ues of a discontinuous function 4y are given. Here we propose a new reconstruction
algorithm based on a simple and reliable procedure for estimnating the discontinuity
parameters with specified accuracy. The main steps of the algorithm are as follows:

Algorithm R:

e Step 1: Find a cell J, such that,

h_”-’.--f-l - ﬂ'],-—ll = Iﬁ].,.l — Ug_q

max
2<T<K(N=-1)-1
¢ Step 2: Determine the discontinuous component,

By, H1<J<J,—1
w={ a;,, ifJ=J
G4, HJ,+1<J<K-(N-1)

o Step 3: Determine the continuous component,
4G =ay;—a%, for IST<K-(N-1)

e Step 4: Find I, I} such that J, denotes the cell corresponding to the interval
[mj,‘ ’ 33] -

TR L AR f1<ILI;

1 By, HIF<SI<K<K-(N-1+1

® Step 5: Obtain point values u§ from %2, using the procedure presented in
Section 2 (equation (2.28)).
* Step 6: Obtain

u;:u}vi-u’ffcrléIgK-(N—-l)—t-l
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It is obvious that the pair of cell averages #y,_1 and %1 represents the dis-
continuity magnitude with first order accuracy. It has been shown in [12] however
that three cell averaged values #j,.1, 1), and #4s,4; contain information about the
discontinuity location up to second order accuracy. However, our algorithm does not
require explicit information about the discontinuity location. As a result, we obtain
a very simple and reliable algorithm for non-oscillatory reconstruction. The current
algorithm is based entirely on the cell averaged values in the physical space and not
on the coeficients of a spectral expansion. Therefore, it fits naturally into the context
of the spectral element method as well as into the context of spectral methods.

3.2. Cell averages. Asin the smooth case we assume that the point values of a
function are known and that the function contains a single jump discontinuity at the
point z,. Again, we decompose a given discrete function into two parts: discontinuous
and smooth, the smooth part can be averaged using the procedure described in Section
2, The cell averages corresponding to the discontinuous part can be computed directly
using the following algorithm:

Algorithm A:

o Step 1: Find point values I}, I7 such that

23178
- ST, S Tpp.

¢ Step 2: Evaluate the discontinuous component

Ao s H1SISI
T up, HIFSISK-(N—1)+1

s Step 3: Obtain the continuous component
wi=ur—uf, for ISISKK-(N-~1)+1

¢ Step 4: For the cell corresponding to the interval [z;,, z;, + 1], defined by J,,

determine
U=, \ fl1<J<J,
at={ W o,
21;(. .T,I;_
Uy, H#J,<J<L<K-(N-1)

o Step 5: Evaluate @5 for 1 < J < K-(N—1) applying the averaging procedure
tou§ (1<I<K-(N-1)+1).
o Step 6: Define iy =a5+udfor ISI<K-(N-1)+1.

4. Hyperbolic equations. The numerical results reported in this paper use
three standard examples: first linear advection problem and the inviscid Burgers
equation and then one-dimensional Euler equations of gas dynamics.
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4.1, Linear advection. The model problem we consider is the initial value
problem given by

u; + au, = 0,
(4.1) { u(z,0) = ¢(z),
u(0, %) = (1),

where ¢(z) and 1(t) are given functions and a is a constant representing the advection
velocity.

The interfacial condition is imposed according to the sign (direction) of the ad-
vection speed, as follows

k41 :
(4.2) u.,:{uo , ifa<,

uk, ifa>0,

4.2. Inviscid Burgers equation. The model problem we consider is the initial
value problem for the inviscid Burgers equation,

{ u¢+(221),, =0,

(43) u(z,0) = ¢(=),

u(0,8) = ().
Note, that the Burgers equation can be rewritten in quasilinear form as follows
(4.4) Uy + uug = 0.

It is clear from (4.4) that u plays the role of the advection velocity in this case.
To impose the interfacial continuity constraint we determine the direction ac-
cording to the Roe-speed (see [10})

k-1
uy -+ uf

(4.5) 4= 5 s

and thus

(4.6) w, = { uktt ifa <0,

uk, ifa>0.

4.3. One-dimensional Euler equations of gas dynamics. The system of
Euler equations for polytropic gas in one dimension is given by:

(4¢.7) u; + f(u); =0,
whith

P rq
(4.8) um(m), fm(qm+P),
E g(P + E)
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(4.9) P =(r-1)(& - 5o),

where p denotes density, q is velocity, P pressure, F total energy, m = pgq is the
momentum and + is the ratio of the specific heats of a polytropic gas.

While the discretization of the Euler system using the cell-averaging approach is
straightforward, the imposition of the interfacial condition requires further discussion.

Interfacial condition

Consider the Jacobian matrix of the system given by A(u) = of /du.

The right-eigenvectors of A are

1 1 1
(4.10) 1‘1(11) = ( g—c¢ ) N 1‘2(11) = ( q ) ? 1‘3(11) = ( g+c ) »
H—gqc i H +gqc

where ¢ = 1/7P/p is the speed of sound and H represents enthalpy and is defined by

_(E+P) ¢ 1,

(4.11) H = P _7—1+2q
The left-eigenvectors of A are

h(w) =55( (Qetely—1)f —e—aly—1), v-1),
(4'12) lz(ll) = é( & — (7 - 1)92—’ (7 - l)q: _(7 - 1)):

L) =35( —(2c—g(y-1))%,  c—aly-1), v-1)
Let us denote the matrix of right-eigenvectors of the Jacobian A = A() as,
(4.13) R = (ry(8), ro(i), r3())

and the matrix of left eigenvectors as,
L(i)
(4.14) L=| L(@) |,
Ly(@)

where i is Roe-averaged state between the states u¥, and uk*? (see [10)).
Then

Ar 00
(4.15) L-A-R=|0 X 0},
0 0 A
where the eigenvalues of A are given by
(4.16) M=¢g—c¢, =g, Ma=q+c
The characteristic variables v = L - u can be introduced for both states as

Vit = L. ubt

(4.17) vk =L.uk.
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Then the values to be imposed at the interface can be defined by

vEH if A <0,
(4.18) (V)i = { () £33

and can be transformed back to the physical variables by

i=1,2,3,

(4.19) u,=R-vy
A similar procedure can be used to impose Dirichlet boundary conditions.

5.-Algorithm. In this section we describe in some detail the time-stepping pro-
cedure, filtering, and flux-limiting which are used in the overall algorithm.

5.1. Time discretization. An explicit time-stepping scheme is used which cor-
responds to the Adams-Bashforth scheme of order M = 1 (Euler), order M =2 or 3
in the form,

(5.1) oyt = 4% Zﬂq fr+ — f1-1779,

Aa: } g

where 3, are appropriate weight coefficients [4]. The higher-order fluxes f; are com-
puted at the Gauss-Lobatto-Chebyshev points after point values have been recon-
structed from the cell averaged field % ;.

5.2. Filter. In our experiments we used the filter developed recently by Vande-
ven [14]. It is given by .

(5:2) oe) = 1- ook [~ P

where p is the order of the filier. It has been shown in [14] that a p-th order accuracy
can be recovered away from discontinuity.

5.3. Flux limiter. Here we describe a flux limiter used in our experiments. Let
us denote by

5L=uI-—'EJ
5R=‘U.{—"‘l'3]+1

and
gy =1y —Us
a3y =Uy—Uja
ey =Uypr — Urgr-
Then we define

U7 = max(0, min(1, &))
(5:3) ¥y = max(0, min(1, $5))
o = xnin(‘ﬁ‘lt', o),
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and evaluate,
(5.4) uf = a5+ ¢F. 58
Following a similar procedure we define

IR = max(0, min(1, 65%))
(5.5) ¥} = max(0, min(1, &)),
TR = min(TR, TF),

and evaluate
(5.6) ull =47, + TR . §R

Finally the flux is computed according to
1 "
(5.7) fr = Sl(FR) + FB) — laal(uf — )]

where &y is Roe-averaged state between uf and u¥. Notice the apparent similarity of
this limiter to Roe non-compressive limiter (see [13]).

5.4. Description of the algorithm.

e Step 1: Employ Algorithm A to evaluate field of cell averages %;(0) on the
Gauss-Chebyshev mesh corresponding to the initial condition u(z, 0).

o Step 2: Compute the transportive fluxes fr at each Gauss-Lobatto-Chebyshev
point.

e Step 3: Advance (explicitly) the cell averages from the previous time level n
to obtain %7},

e Step 4: Reconstruct point values u from the cell averages employing Algo-
rithm R.

e Step 5: If the target time is not achieved go to Step 2.

6. Numerical results. In this section we will report several numerical exper-
iments with the developed algorithm, including approximation results, linear advec-
tion, inviscid Burgers equation and the 1-D Euler system analyzed in Section 4

Non-oscillatory averaging and reconstruction.

Our first experiment reported here concerns a static non-oscillatory averaging
followed by reconstruction. Given are the point values of the following function

3 4 _ ) EHe=z-7),if0<z<5,
(6.1) U= oAy Wherey‘{ Z(z—9), f5 <z < 10.

This function has a jump discontinuity at z, = 5. First, we evaluate cell averages of a
given discrete function using Algorithm A, and then, we reconstruct the point values
from the cell averages using Algorithm R. In Fig.6.1 we plot on the logarithmic
scale the errors corresponding to three different discretizations. In each case the
discretization consists of 5 spectral elements (K = 5), whith each element containing
N = 20,40,80 points. The Vandeven filter of orders p = 5,10,20 was applied for
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each case respectively to the Chebyshev spectrum of the smooth component on each
element both in averaging and reconstruction procedure. This filtering was essential in
order to obtain an exponential accuracy shown in the Fig.6.1 away from discontinuity.
Linear advection of discontinuous solution.
Consider the initial boundary value problem for the linear advection problem
(41) for 2 € (0,10}, a =1 and

$= .5, for z <5,
] 15, forz > 5,

In Fig.6.2 we plot the numerical solution for N = 64, K = 1 (global spectral
method) at time ¢ = 2.0. In Fig.6.3 we plot the numerical solution to problem (4.1)
with initial conditions given by (6.1) for N = 40, K = 5 at time ¢ = 1.0. For both
cases exponential convergence is obtained away from discontinuity.

Inviscid Burgers equation.

We consider the initial value problem in the interval = € [0, 6] with initial condi-
tions given by

u(z,0) = 0.3+ 0.7sin _7;_:1:

This initially smooth problem develops eventually a shock discontinuity in the solu-
tion. The exact solution is easily obtained, and is used the accuracy of of the proposed
algorithm.

In Fig.6.4 we plot for N = 20, K = 8 at time ¢ = 2.0. The pointwise errors
are plotted on the logarithmic scale on Fig.6.5 for K = 8, and N = 5,10,20. The
Vandeven filter of orders 4,8 and 16 respectively was used. In all these experiments
the non-oscillatory recomstruction was performed after the estimated discontinuity
magnitude became larger than 0.4. (We observed that the results are not very sen-
sitive to the particular value of the threshold.) Also, the limiter described in Sec.5.3
was employed here in the interval of 10 gridpoints around the cell containing discon-
tinuity (except at points next to that cell - one on each side). Forward Euler time
stepping was used at these points to advance cell averages. We found in our experi-
ments with this example, that applying the global Chebyshev speciral method with
non-oscillatory reconstruction and filtering the spectrum of the smooth part resulted
in a very poor accuracy (O(1) error) in the large part of the domain. This seems
to be related to the creation of shock in this case. Large differences occur between
several cell averaged values at that time. However, the non-oscillatory reconstruc-
tion method treats only 3 subsequent cells. Applying flux limiters in this part of
the domain restores algebraic convergence there. Employing spectral elements led to
localizing of this region within one element, as we observe on Fig.6.4.

One-dimensional Euler gas dynamics equations.

Here we present our numerical experiments with the test problem considered in
[1, 3]. We consider the following initial condition for (4.7),

(6.2) o= 3.857143, q = 2.629367, P, =10.33333 —5<z< -4,
’ pr=1+4esinxz, ¢, =0, P =1 —4 <z <5,
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where ¢ = 0.2. The solution to (6.2) models the interaction between a moving shock
and sinusoidal density disturbances (see [1, 3]). In Fig.6.6 we display the density
profile for N = 10 and K = 22 (corresponding to 201 grid points) at time ¢ = 1.8.
The discontinuity cell was located using the momentum equation. For comparison
reason we also plot the solution obtained by the second order MUSCL scheme with
N =200 in Fig.6.6.

7. Discussion. In this work we have formulated an algorithm based on spec-
tral element discretization and essentially non-oscillatory approximations concepts.
The results show that this approach leads to a stable method, capable of producing
exponentially accurate solutions away from discontinuities. There is also indication
that blending the non-oscillatory reconstruction ideas and flux limiters may lead to
a significant improvement in the quality of the results. The conclusion can be for-
mulated as follows: inspite of the rough numerical treatment in the neighborhood
close to discontinuity the accuracy away of discontinuity does not deteriorate. More-
over, the method is capable of resolving very accurately fine structures arising due to
interactions of the shock with disturbances.

The generalization of the present method for the case of multiple discontinuities
is straightforward. However, it seems that the method in its current form is not
capable of treating rarefaction waves.
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Euler equations
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FIG. 6.6. (1) Interactions between a shock wave and density waves with N = 10, K = 22 (201
grid points) at time t = 1.8. The solid represents the solution obiained by the third order ENO
finite difference method with 1200 grid poinis [courtesy of Wai-Sun Don and David Gottlieh, Brown
University).

Euler equations
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