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Abstract :

The purpose of this work is to couple different numerical models for the calculation
of high speed external flows.

The proposed coupling is achieved by the boundary conditions, which impose
viscous fluxes and friction forces on the body for the calculation of the global
external flow and which impose Dirichlet type boundary conditions on the interface
for the local model. *

1. Introduction

The purpose of this work is to couple different numerical models for the calculation
of high speed external flows.

More precisely, we want to be able to introduce a specific treatment of the flow
next to the body, this

i) for numerical purposes, in order to use locally a different solver (centered
scheme,...) ;

it) for approximation purposes, in order to use locally a much finer grid ;

iii) for physical motivations, in order to use locally a different equation such as
nonequilibrium chemical models or Boltzmann kinetic models.

The proposed coupling is achieved by the boundary conditions, which will impose
viscous fluxes and friction forces on the body for the calculation of the global
external flow and which will impose Dirichlet type boundary conditions on the
local model.

2. Description of the coupling strategy

2.1. Navier-Stokes equations

Let us consider the compressible Navier-Stokes equations which we formally write

either as
ow

B +diw[F(W)| =0 on £ (conservative form)
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or as
U
%t_ +T(U)+D({U)=0 on £ (non conservative form)

with W = (p, pv,pE) and U = (p,v,8) the conservative and non conservative
variables, F' = Fg + Fp the total flux (convective and viscous part), T' and D the
convective and viscous terms in the nonconservative writing of the Navier-Stokes
equations. The problem consists in computing a steady solution of these equations,
with boundary conditions

pv, pE given on I, (exterior limit of the domain),

p given on L', N {z,v(z) - n < 0} (inflow),
v = 0 on the body T'y,
8 = 6, on the body T',.

The global numerical treatment of these equations faces the following difficulties:
- in a conservative calculation, the numerical viscosity of the discretization scheme
interferes with the physical viscosity and for a mesh of reasonable size leads to an
overprediction of the boundary layer. Moreover, no slip boundary conditions on
the body are difficult to handle for many TVD schemes ;

- in a nonconservative calculation, the correct calculation of a shock requires locally
a very fine grid if we want to satisfy the Rankine Hugoniot conditions.

In this framework, our strategy will couple a global conservative scheme, defined on
the whole domain, and based on a finite volume space discretization (1], and a local
approzimation, defined in the neighborhood of the body, which is presently based
on a mixed Finite Element approximation of the nonconservative Navier-Stokes
equations [2].

2.2. The Boltzmann equation

Denoting by f(z,v,t) the distribution function of gas particles at time ¢, position
z and with velocity v, the Boltzmann equation takes the form

2 fa,0,0) 4 v+ 4o f(w,0,) = QUL @)

with @ a collision operator, given by

QU F)(@,v,t) = / 1 /w  UF = )0 = v, w)dndon,

fl =f($,vlyt))
fl =f(m,v',t),v'=v+((v1 —v)-w)w,
fllr = f(a:,'u;,t),vi =v ((’01 - U) ) w)w'

Above (v — vy, w) is the collision kernel ; for hard spheres, this kernel is propor-
tional to d?|(v — v;) - w).
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For rarefied gases, this equation must be used in place of the Navier-Stokes equa-
tions, especially in the immediate neighborhood of the body (Knudsen layer).

On the other hand, when density increases, collisions are very frequent, and the

numerical treatment of the Boltzmann equations requires very fine grids, very long
CPU time and is rapidly unfeasible.

Qur strategy here will couple Navier-Stokes equations, used in their domain of
validity far from the body and Boltzmann equations, to be used locally in a small
domain next to the body. This strategy will then enable us to use more realistic
kinetic boundary conditions on the body, avoiding the so-called slip boundary
conditions generally used in such situations.

2.3. The general coupling strategy

For coupling global Navier-Stokes equations either with a local Navier-Stokes
model, or with a local Boltzmann kinetic model, we introduce two domains, a
global one Q, a local one Qy included in 2, and an interface I'; (Fig. 1). The
global solution W on © and the local solution U, on 0y are matched by the
following boundary conditions, inspired of Schwartz overlapping techniques :

(W = given imposed value on Iy

n-o(W)-7=n-0(U) -7 on the body 'l:‘o,

(equality of friction forces)

gW)-n+n-o(W) - v=q(Us)-n on T,

(equality of total heat fluxes)

v.n=0onT,,

Upe =00n T, (or an equivalent kinetic condition for the Boltzmann case),
{ Utse = W on the interfacel’;.

Fig. 1: The global geometry

The calculation of U, and W satisfying the above boundary conditions is then

obtained by a standard time marching technique, which leads to the following
algorithm :



NUMERICAL COUPLING 423

Initialization

1. Guess an initial distribution of the conservative variable W in the global domain
Q;

2. Advance in time this distribution by using the global Navier-Stokes solver on
N; time steps, with Dirichlet type boundary conditions on the body T, ;

3. Deduce from this result an initial distribution of the local variable Uj,. on the
interface I'; and in the local domain Qv ;

4. Advance in time this distribution by using the local solver on N; time steps,
with Dirichlet boundary conditions on I'; and T',.

Iterations

5. From Uj., compute the friction forces n- o(Uy,.) - 7 and heat flux ¢(Uj,.) - n on
the body T, ;

6. Advance the global solution in time (N; steps) by using the global Navier-Stokes
solver, with the above viscous forces as boundary conditions on T, (§2.4);

7. From W, compute the value of Uj,. on the interface I'; ;

8. Using this new value as Dirichlet boundary conditions on I';, advance the local
solution in time (NN, steps) and go back to step 5 until convergence is reached.

A parallel version of this algorithm is also quite possible although it is generally
wiser to use parallel solvers within steps 6 and 8.

2.4. The global Navier-Stokes solver

The global domain Q is discretized using node centered cells defined on an un-
structured grid. Then, at each time step n and for each cell ¢, we solve

n+l __ n
/u+ Z/ Fo(W™) .,
C; At JEV() AC;NaC;

+/ Fp(W™*1) . n; +/ F(w™t).n; = —/ F, - n;.
8C; T 8C:iNTeo 8C;nT,

In our numerical implementation, the fluxes F¢ and Fp are computed i.l.t time
step n + 1 and linearized, with Fc computed by an Osher approximate Riemann
solver {1]. The resulting linear system is solved by block relaxation.

On the body T',, because of our special choice of boundary conditions, the flux is

given b
Y 0

7 _ n; - o(W"t1).n;
/aac.nro o= ac;nT, ni - 0(Utoc) - Ti ’
Q(Uloc) L

where the aspect of a boundary cell C; is described in Fig. 2.
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Fig. 2 : A boundary cell

In other words, friction forces and heat flux are given explicitly by the local solver
and the mass flux is imposed to zero. Then, in order to have a well-posed problem
(at least in the incompressible case [4]), the normal stress (the multiplier of the zero
mass flux constraint) cannot be imposed and must be obtained from the solution
wntl,

Remark : Imposing friction forces to the global solution instead of no slip bound-
ary conditions allows to have an accurate solution away from the boundary layer
even with a coarse mesh (§2.6 [5}).

2.5. Interpretation

The final question concerns the interpretation of the coupled problem solved at
convergence in §2.3.

In a Navier-Stokes /Navier-Stokes coupling, this interpretation is easy. For very
fine discretizations, U, and W satisfy the same Navier-Stokes equations on Qv
and, at convergence, they satisfy the boundary conditions

W =U,: on T,
g(W)n +n.o(W)v = q(Uise)n + n.0(Uloe) Vioe on T,
n.o(W).1 =n.o(Up:). T on T,

v =vp.n=0 on T,

From this, we deduce that W and Uj,, are solution of the same well-posed prob-
lem defined on Qv by the Navier-Stokes equations and by the above bound-
ary conditions. Hence we have W = U, on Qy which implies that W sat-
isfies the no slip boundary conditions W = U, = 0 on I', (more precisely
W = (p,pv,pE) = (p,0,pcy0,) on T,). Since W also satisfies by construction
the inflow boundary conditions on Iy, and the Navier-Stokes equations on {2, we
finally see that W is the solution of our original problem.

K the discretization step is not very fine, then W and Uy, are only identical within
the discretization error, error which is produced first by the coarse mesh used
for computing W and second by the weak treatment of the boundary conditions
imposed at the wall to W. Because of this weak treatment, the discretization error



NUMERICAL COUPLING 425

on W is hoped to stay local, which means that we hope that W will be reliable on
the interface. If this is the case, Uj,. will satisfy the right equation inside Qy and
the right boundary conditions on the interface and on the wall; it should then be
an accurate local approximation of the solution.

For the Boltzmann/Navier-Stokes coupling, similar arguments can only hold if
we make some additional assumption. For example, we can suppose that Boltz-
mann and Navier-Stokes equations correspond to the same physical problem in-
side Qy. Then W is solution of the same physical problem on Qy as is U,
and is characterized by a set of boundary conditions (quasi Maxwell distribution
on the interface, imposed friction forces on I'y), which are also satisfied by Uj,..
Therefore, it should correspond to the same physical solution. By construction,
this physical solution then satisfies the Navier-Stokes equations on Q (because W
does), the imposed inflow conditions on T's, (also because of W), and adequate
kinetic boundary conditions on the wall (those imposed on Uy,.). Compared to a
standard Navier-Stokes approach, and under the assumption on the equivalence
between Navier-Stokes and Boltzmann, we have finally replaced the unknown wall
boundary conditions on the velocity by a well defined kinetic boundary condition
imposed on Uj,, and, through Uy, we also have some information on the kinetic
structure of the flow next to the wall.

If we do not believe in the equivalence between Navier-Stokes and Boltzmann
models inside 0y, we can still justify our coupling strategy provided that we as-
sume that imposing friction forces on ', given inflow data on I'; and using either
Boltzmann equations or Navier-Stokes equations on {2 lead to the same physical
solution Uy, outside Qy. (For the Boltzmann model, we would supplement the
friction forces by an additional information extracted from Uy, in order to get a
well posed problem). Then Uy, and Uy, would satisfy:

equality of velocity distribution on interface,

equality of friction forces (+ additional information) on the wall,

the same Boltzmann equation on Qy.

We would deduce as for the Navier-Stokes/Navier-Stokes coupling that Utoe = Ugto
inside the local domain, and in particular at the wall. Then, Ugo, sa{;is‘fyiﬂg the
kinetic conditions imposed to U, on the wall, the Bolizmann equation on Q
and the adequate inflow boundary conditions on I, is the desired Boltzm:cmn
solution. In turn, this means that U, is lIocally equal to the des.ired so.lutzon.
Therefore, if our assumption is true, Uy, is locally the kinetic solution which has
been computed at low cost by using a coarse averaged approximation away from

the wall (outside Qv).

3. Coupling conservative and nonconservative schemes

3.1. The local solver

In this case, the local solver takes the form

o let U° = (p,v, ) be computed at the previous call of the local solver ;

o let U; = (p,v,8) on I'; be computed by interpolation from the values of the
global solution W on the interface ;
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e for n = 0 to N, solve the local nonconservative Navier-Stokes equation

At
Ut'=U; on Ty
(v**1,6"*1) = (0,6,) on T,.

yrti—yn ; .
/ ——-—-—-U,-+/ (T + DY(U™) - VT, = 0,V
Qy Qv

Here the nonconservative Navier-Stokes equations are discretized by mixed Finite
Elements (P; for p and 6, P; on the subdivided P, grid for the velocity). The
test functions I}j correspond then to the shape functions of the corresponding
Finite Element spaces. The resulting nonlinear system is solved by a few steps of
a nonlinear GMRES solver with diagonal preconditioning.

In output, friction forces and heat flux are given by
o(Uioe) = p(87 ) (Vo™ 4+ Viontl) /2 — %divv""’lfd),

69n+1
on

‘J(Uloc) =A

Remark

i) The Dirichlet condition on T'; can be replaced by a Neumann type boundary
condition of the type

(T + DYU™ )= g(W) on T

Such a condition might lead to an easier local problem, since it does not impose a
fixed value of the density on an outflow boundary.

ii) The nonconservative approach simplifies the calculation of the viscous terms
and is well suited to flows at low Mach numbers. On the other hand, it cannot
treat hypersonic situations. There, the local solvers must also be conservative.

3.2. The numerical test

The test problem considers a two dimensional flow around an ellipse, with 0 angle
of attack, M, = 0.85, Reynolds number = 100, and a wall temperature Ty =
2.82T .

Four different numerical solutions have been computed.

i) The first one uses the global solver with no slip boundary conditions on a
"coarse” mesh having 4033 nodes and 7942 elements.

ii) The second one uses the same solver with the same boundary conditions but on
a finer mesh having 16008 nodes and 31768 elements. This will be our reference
solution.

iii) The third one uses the local nonconservative solver to solve the problem on
the whole domain . Its velocity mesh is identical to the mesh used in (ii).

iv) The last one uses the coupling strategy of §2 ; the global solver uses the coarse
mesh of case (i), the local solver uses the restriction to Qv of the mesh of case (iii)
("fine” grid for velocity, "coarse” grid for density and temperature).
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The reference numerical results are shown on Figure 3 (Mach contours), 4 (skin
friction coeficient Cy on the body), and 5 (velocity field in the wake). We observe
small vortices in the wake, which can only be detected by a fine mesh, and large
viscous effects.

Compared to this reference calculation, the coarse mesh calculation of case (i)
gives the same Mach contours, but the maximum Cy is now 0.35 (instead of 0.40)
and the maximum S, is 0.084 (instead of 0.062).

As for the global nonconservative calculation (iii) and the coupled calculation (iv),
they are both perfect for the Mach contours and for Cy (less than 3% error), but
overshoot the maximum value for S, (0.085).

This indicates that the temperature grid (which is the coarse grid of (i)) is too
coarse. If we now decrease the size of the computational domain to less than
twenty times the length of the body, the global nonconservative calculation is very
rapidly polluted, which is not the case for the coupled problem.

A last output of the coupled approach is the tangential velocity computed on the
body by the global solver. These values are very small (0.02) which means that
the global mesh is reliable. When the global mesh gets too coarse, these values
increase, but the Cy are still correctly predicted by the coupled approach, which is
not true for a global conservative approach with no slip boundary conditions. In
other words, the coupled approach gives both an error estimate and a protection
against coarse meshes.

In summary, for sufficiently fine meshes, all three numerical approaches (global
conservative, global nonconservative and coupled) give good results. Compared to
the global nonconservative approach, the coupled approach is more robust and can
use much smaller computational domains. Compared to the global conservative
approach, the coupled method requires fine grids in much smaller regions and
allows a large flexibility in the definition of boundary conditions. This flexibility
will even be larger in the Boltzmann case of §4.
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3.3. Convergence properties

As described in [5], numerical tests run for a linear advection diffusion problem
show that the coupling algorithm is linearly convergent when At is below a limit
value which increases with the Reynolds number. A one dimensional analysis
shows that this condition is necessary, an asymptotic analysis done for At and h
small ({4]) shows that such a condition is sufficient.

More precisely, if we replace the Navier-Stokes equations by the linear advection
diffusion problem

% -A¢+v.V¢+é =0,
ot a

6= ¢oo on 1100,

¢=0 on T,,

and if we denote by d the minimal distance from the wall to the interface, we have
(18D

1) for At = oo (that is equivalently if we take Ny and N to be very large), from
the maximum principle, the proposed coupling strategy converges linearly (with
constant Kezp(—d?/a)) if d?/a is large, and diverges if @ = 0 and d small;

2) for At arbitrary, and if we use a time implicit boundary coupling

ownt! 3}
on On e

the proposed coupling strategy converges linearly. Moreover, a fixed point al-
gorithm applied to the calculation of %U 7+ will converge linearly if d?/At is
sufficiently large;

3) for At arbitrary and time explicit boundary coupling

awnti 0 .

“on ~ onliee O To
numerical evidence shows that the proposed coupling strategy converges only if
At is below a certain threshold.

There were no convergence problems in the numerical tests of §3.2. For cases
.(i) a.n.d (ii), using local time steps, we reach a residual value of 107*? after 1650
iterations in case (i) and 6270 iterations in case (ii), the residual being given by

l(p™+! = p™)/At"|lo 2
l(p* — p°)/Ato]o,2

For the global nonconservative calculation of (iii), we reach a residual value of
0.4 x 10~7 after 900 iterations with

reg=

Te = |I%§ llo,z/meas(Q).

For the coupled approach, run with N; = 450 and N, = 50 in the initialization
process, and with N; = Ny = 1 in the iterations, we reach a residual value of 103
after 50 iterations.
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4. The Boltzmann/Navier-Stokes coupling
4.1. The local solver

In this case, the local solver is a Monte Carlo method developed at the University
of Kaiserslautern, and corresponds to the following algorithm :
- Define an initial particle distribution (§4.2) ;
- Loop on time. For each time step :
. generate particles at the interface I'; (§4.3),
. advance the particles by free transport : z?t! = 22 + vP AL,
. erase the particles which have left the computational domain through T';,
. treat the particles which have collided with the body (§4.4),
. regroup particles together in small cells,
in each cell, make the different particles colllde by coupling them randomly and
randomly plckmg the corresponding collision parameters ([3]).

SO Wb

In output, the average values p,u, T and the wall fluxes are obtained by averaging
on all cell particles j and on several (N =~ 100) consecutive time steps:

1
pzN-VolCellzn:zj:mj

1
=5 N Vol CellZ Atk
St o Y bt Lo
2 p- N Vol Cell 2 2
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4.2. Constructing a particle distribution

In order to minimize storage requirements, the particle distribution is not stored
between two calls of the Boltzmann solver. We just store the average values p,u

and T for each cell i. Then, at each Boltzmann step, e construct the initial
particle distribution on cell ¢ by randomly distributing p,——’—‘-L particles on the cell

i, distributing velocities with the Maxwell probability Iaw

M(e) = Eogerp(~(o ~ u)"/2RT:).

4.3. Generating particles on the interface

In our coupling strategy, the values of the local solution on the interface I'; must be
obtained from the values of the global Navier-Stokes solution W on this interface.
For Boltzmann, this is simply achieved by defining a layer of cells around the local
domain Qy (Fig. 6). Then we define the average values p,u and T in these cells
by interpolating the values of the global solution W at the cell center. Finally,
from p,u and T', we construct a particle distribution on these cells as done in §4.2,
and proceed with the other steps of the local solver.

This particle construction is done at each time step.

LT TP eI vTd
. n
- .%':CELLS
= .
HEEIEEREEEEEN
Ty

Fig. 6 : Interface between Boltzmann and Navier-Stokes
4.4. Wall boundary conditions

In kinetic theory, the interaction of gas molecules with the body surface is modelled
by a boundary condition on the distribution f(z,v,t). Between all possible models,
the most popular is the so-called accommodation model in which every particle
which collides with the wall is reemitted with a random velocity whose distribution
obeys a Maxwell law at wall temperature Ty. At the numerical level, for each
particle colliding with the wall, we pick four random numbers q@; in the interval
(0,1) and define its output velocity in an accommodation model by

v = \/—Twlogay,
= «/~Tw log az(cos2na;e, + sin2wa;e,).

Here vy, is the velocity normal to the wall, e, and e, are two orthonormal vectors
tangent to the wall and v, is the particle tangential velocity.
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4.5. Computing fluxes at the wall

These fluxes are computed from their kinetic definition. Under the notation
n = unit normal vector, exterior to the flow field,

T’ = portion of body surface where fluxes are computed,

dS = area of T,

dt = considered time interval,

J = set of particles colliding with T’ during time interval dt,

Fig. 7
the quantity o - ndSdt is equal to the sum of all impulses received by particles
which collide with I' during the time interval dt, that is

o -ndSdt = Z mi(v}F — 7).
icJ
Similarly, the total flux ¢ - ndSdt is the energy given by the particles to the wall
during collision, that is

1 -
g-ndSdt = — Z Em;(lvflz - |v; 12)
ieJ
4.6. Numerical test
On the same ellipse as before, we compute a rarefied flow corresponding to My, =&

and Reynolds number = 300.
More precisely, we have

T = 194°,

Tw = 1000°,

Mean Free path = 0.197Tm,
Ellipse length = Tm.

This case is computed by four different physical models. We present the Mach
contours (Fig. 8) and the friction coefficient (Fig. 9).
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Case 1 : Navier-Stokes with no slip boundary conditions (y = 1.414)
The mesh contains 2247 nodes and 4374 elements. The numerical solution is rather
easy to compute, but in the rear part of the body the density is low and the friction
coefficient high, which is not very physical.

Case 2 : Navier-Stokes with slip boundary conditions (y = 1.414)

The boundary conditions on the body are here ([6])

u-n=20,
Vu + Viy
n-——-——-

5 T=—Apu-T.

These boundary conditions which are popular in rarefied flows computations, are
very difficult to handle ; even with a mesh of 5544 nodes and 10888 elements,
we could not avoid a singularity of the friction coefficient in the rear part of
the body (Fig. 9.2, with po, = 107%kg/m® and A = 7.92). Actually, the above
boundary conditions which are derived for a rarefied boundary layer are completely
unjustified in this flow situation.

Case 3 : Boltzmann with accommodation(y = 1.2)

The mesh here contains 5985 cells with 25 particles per cell. The collision kernel
corresponds to the hard spheres model.

Case 4 : Coupled model (local Boltzmann model with v = 1.2, global
Navier-Stokes model with v = 1.414)

This first coupled model is inconsistent from the physical point of view (7y is dif-
ferent in Navier-Stokes and in Boltzmann) but it was run for qualitative purposes.
There were 4 coupling iterations with N; = N = 100. At this stage, the inter-
face values have reached their asymptotic limit, and the coupling algorithm can
be safely stopped. In the initialization process, the global solver was used for 300
iterations (CFL = 5) with no slip boundary conditions.

The corresponding results are compatible with those of a Boltzmann simulation.
A rarefied region appears in the wake and the friction coefficients are smoothly
decreasing in the rear part of the body (Fig. 9.4). The same behavior can be
observed on the Stanton number. As for the tangential velocity on the body as
predicted by the coupled global Navier-Stokes solver, it is non zero but smaller
than the one predicted by the slip model of case 2.

4.7. Conclusion

The preceding test is based on a coupling strategy which on one hand bypas.ses
the problem of getting adequate boundary conditions for rarefied ﬂows. Navier-
Stokes solutions and on the other hand reduces the computational domain of the
Boltzmann simulation. This test :

1) proves the feasibility of the coupling approach,

ii) leads to a reasonable solution, o

iii) illustrates the weakness of the Navier-Stokes approach in such situations.
This test must be completed by a more systematic analysis of rarefied ﬁcvs{s. and
by using more sophisticated kinetic models for collisions and boundary conditions.
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