CHAPTER 26

Nurerical Solution of a Turning Point Problem™

Wei Pai Tangt

Abstract. The turning point problem

du 4 ,du _ _ -
_eAu+zM+y—5§—0 (=, v) € [(-1,1) x (-1, 1))
u(-1,9) =V, (1, y) = W,
w(z,-1)=V,, u(e,1)=Vg
is known to have some exiremely small eigenvalues. No successful numerical solution to this problem

has been reported. In this paper, a numerical procedure is proposed. All four boundary layers are
well defined and the numerical singularity is successfully removed.
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1. Introduction. The singularly perturbed elliptic partial differential equation
fu Ou

M) — e+ afe, 1) g5 + o050 + ko pu =0
has been extensively studied by many researchers. When £ — 0, the solution to
this problem becomes difficult. A typical property of the solution is the existence
of boundary layers. This problem has many important applications including the
solution of the Navier-Stokes equations and stochastic differential equations [13].

In (1), the lower order operator represents the deterministic flow field while the
second order part represents a slow diffusion of particles. Therefore, the results will
depend on the nature of the underlying flow. In [13], Matkowsky classifies the sin-

gularly perturbed elliptic boundary value problem into three cases according to how
the particles are diffusing:
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Type (1). with a flow,

Type (2). across a flow,

Type (3). against a flow.

In particular, the problem of type (3) is called the turning point problem, since
the flow changes its direction inside of the region. Asymptotic analysis of the three
types of diffusion can be traced back to the early 1950’s [10, 11]. The third type of
diffusion is the most difficult one. The first few results were obtained by O’Malley;
Ventsel and Freidlin [14, 20]. Later, a stronger result was reported by Ludwig [12].
More results have been published since then [7, 15].

The investigation of the numerical solution of the turning point problem started
from stiff-ODE problems. Dorr (1971) first reported that the turning point problem in
the one-dimensional case is extremely ill-conditioned [4]. For example, the condition
number of the matrix equation for the following problem

y(-1)=a, y(1)=0>

is k(A) = 1.1021 - 10**, where ¢ = 0.003 and » = 100. Many numerical techniques
for the stiff-ODE and turning point problems in the one-dimensional case are found
in [1]. However, successful numerical techniques for turning point problems in higher
dimensional spaces have not been reported. This is because of the extreme numerical
singularity of the resulting matrix equation. B. Zhu has shown [21] that the smallest
eigenvalue of the following problem

{ —edu+2dE +yGE=du (2,9) € [(-1,1) x (-1,1)]
u(:c,y)lr =0

has the estimate

Al < O(e7/2e0)

where a > 0.

Much work has been done for boundary layer problems in higher dimensional
space. For example, Hedstrom and Osterheld first studied the effect of £ on the
boundary layer [6]. Segal discussed the different aspects of numerical methods which
relate to the computation for singular perturbation problems [18]. Rodrigue and
Reiter [16] investigated the application of the Schwarz Alternating Method (SAM) to
(1). Brown, Chin, Hedstrom, Manteuffel and Scroggs [2, 3, 9, 17] studied other domain
decomposition techniques. Elman and Golub reported their sequence of studies on
iterative methods for the convection-diffusion problem [5].

In this paper, a numerical procedure using the domain decomposition approach,
or more precisely SAM, for the solution of turning point problems is presented. This
procedure can remove the severe numerical singularity in the original form; therefore,
a successful pumerical solution for this problem becomes feasible. The same SAM
can also be used to accurately define the sharp boundary layers.
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2. Turning point problem. In this paper, the following turning point problem
is considered:

—eAu+ 2L +y%;—j =0 (z,9) € [(=1,1) x (~1,1)]
(2) u(""lfy) = Vo, u(17'y) =W,

u(‘”a '“1) =V, u(wv 1) =V

This problem was suggested by C. Holland [8]. It is typical of a wide class of turning
point problems. The solution to this problem has four sharp boundary layers of width
£ at each side of the square and the solution at the origin is

1
u(0,0) = 2(Va + Vo + Vo + Va).

The technique we use for solving this problem can also be applied to other cases [19].

Applying Zhu’s result to this problem, the linear system of equations discretized
from (2) will have an extremely ill-conditioned matrix if ¢ is small. No meaningful
numerical solution can be obtained if special techniques are not used [8]. However,
if we carefully examine the relationship between ¢ and the condition number of the
matrix, the following three observations are very important to the construction of our
numerical procedure for the solution of (2).

1. The smallness of ¢ is relative to the size of the solution domain. If we reduce
the size of the solution region in (2) the same small ¢ will result in a different
condition number. It is clear that the solution for a smaller region is less
difficult. Thus, if a domain decomposition approach is used, the solution of
each subproblem will be easier.

2. When the domain decomposition approach is applied to the turning point
problem, most of the subproblems are not turning point problems! There-
fore, the solution of these subproblems is not an issue. There is only one
subdomain which contains a turning point!. Fortunately, it can be made to
have a very small size.

3. The asymptotic analysis of this problem [14, 21] showed that the expansion
of the solution of (2) in a series of ¢ has one base term. In particular, this
term is independent of ¢ . Therefore, if ¢; and ¢, are close, the corresponding
solutions of the same boundary value problem (2) are also close. Most of the
changes happen around the boundary layers. Numerical computations have
verified their analysis.

Based on the first two observations domain decomposition approaches (and the
Schwarz alternating method (SAM) in particular) seem to be very helpful in overcom-
ing the numerical singularity which appeared in the original problem. Specifically, if
we decompose the solution region into many small overlapping subregions, there is
only one subdomain which contains a turning point. The rest of the subproblems are
“easier” boundary layer problems, for which many known numerical techniques can
be used to solve them. Since the size of that subdomain which contains the turning

i We qnly discuss the single {urning point case in this paper. There is no conceptual difficulty in
generaliving our procedure o the case of more than one turning point.
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Procedure Turning point_problem ()
Choose g4 such that

(9) (O)]
—cofu® + 20 Ly B~ 0 (o) € [(-1,1) x (-1, 1)]

u(o)("'l, y) = Va, u(o)(17 ?/) =W,
uO(z,-1) = V,, u(z,1) = V;,

can be solved without stability problem.
Leti =20
While ¢; > ¢ do

Pick €;41 < &; and a new set of overlapping subdomains.
Use u®) as initial guess start the SAM iteration for

. i+1 i+1
—€ip Aultl) 4 :ca"g; ) + a"(:;; ) - 0
. (3,9) € [("’1’]:) X (_1’ 1)]
'u'(H—I)("‘l’ y) =V, 'u'(ﬂ.l)(l’ y) =W,
W2, -1) =V, u(z,1)=V,,

until it converges.
t=t+1
end
end

Fia. 1. Numerical procedure for turning point problem.

point is smaller, the numerical difficulty of solving this subproblem will not be as
severe as the original problem. However, this naive approach still faces the stability
problem if a poor initial guess is given for a very small ¢ . Fortunately, the third
observation can lead us to a successful solution process. We start from a “large” ¢ for
which the turning point problem can be solved without a stability problem. Then we
reduce the ¢ and decompose the solution region into several overlapping subregions.
Using the solution from the large € as the initial guess for the new decomposition,
SAM can be applied to obtain the solution for the new smaller ¢ . Two issues in this
process are important:
¢ The new ¢ should not change too rapidly so that the solution corresponding
to the new problem has no large changes in parts of the region.
¢ The size of the subdomain which contains the turning point has to be small
enough such that the solution of this problem has no stability problems.

3. Convergence analysis. For problem (2), the matrices resulting from many
finite difference or finite element discretizations are ansymmetric. The convergence
of the SAM for these matrices needs to be justified.

It is known that the matrix from the discretization of (2) is diagonally dominant,
if an upwind scheme is used. When the grid size A is small enough, the matrix
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Given initial guess z(®),

While ||Az® — 3| > Tl do

p+1) = o)
For i=110k
Solve?

Agal = 53+,
Update z(+1) by :cgfl)
end
I=10+1
end

% Note that bg;,"l) contains the information from the artificial boundary as well.

F1G. 2. Description of the SAM algorithm.

resulting from a central scheme is also diagonally dominant [5]. With this diagonal
dominance condition, a convergence result can be shown.

Let
Az =10

be the matrix equation from the discretization of (2), and €;, ¢ = 1,---,k be the
overlapping subdomains such that all grid nodes on the artificial boundary are lo-
cated at least in the interior of one subdomain. Denote g, as the unknown vector
in subdomain £; and and Aq, the corresponding principal submatrix for these un-
knowns. The description of the Schwarz alternating method applied for this particular
decomposition is given in Fig. 2.

Then the following lemma can lead to the convergence of the SAM algorithm in
this case.

LEMMA 3.1. If the matriz Ag, is diagonally dominant, then

lea; lloo < 7ller o

where xr; i3 a vector which contains all boundary node values (including both irue
and artificial boundary nodes) of ; and v < 1
Proof. We prove this lemma by contradiction. 0

4. Boundary layers. To gain efficiency and to maintain the diagonal domi-
nance, the upwind scheme is used for defining the overall solution. However, it is
known that this scheme is diffusive on the boundary layer. The central scheme is
used around the boundary layer to improve accuracy. Many much smaller overlap-
ping subregions (say size of 30c x 30¢ ) along the boundary are allocated. Of course,
the grid size of these subdomains is refined to the size of ¢ . Apply SAM to these new
boundary subdomains and a convergence solution is ensured. Our numerical results
indicate the improvement of sharpness in the boundary layers.
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Fig. 3. Surface plots for ¢ = 1/50, 1/1600, 1/200.
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Fi16. 4. Surface plots for e = 1/406, 1/800.
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5. Numerical testing. Numerical testing is carried out for this model turning
problem (2). We start with o = 0.02. The solution of this problem has no stability
problem. Then we set ¢, = 0.5%&,_;; decompose the square into (k+1) x (k+1) equal
sized subdomains and apply SAM to the turning point problem with the smaller &
. It is interesting that the solution of the turning point subproblem does not change
any further after £ > 3. In a real application, many of the subproblems which
are away from the boundary layers need not be recomputed after reducing ¢ a few
times. This phenomenon can be explained by the asymptotic expansion for this
problem [14, 21]. We present the surface plots of the solution for ¢ = 0.0025, 0.00125,
and 0.000625. In particular, we present both solutions before and after using central
scheme to sharpen the boundary layers. Our computation stopped when ¢; = 1/1600.
If the computation would continue for even smaller ¢ , the decomposition strategy
we used here need to be updated to ensure the stability problem of the turning point
subproblem.
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