CHAPTER 25

On Adaptive Domain Decomposition with Moving
Subdomains

Calvin J. Ribbens*

Abstract. Considerable attention has only recently been given to adaptivity in the context of domain
decomposition. While most of the work is based on a grid refinement strategy, we discuss here a moving
grid approach to adaptive domain decomposition. The performance of two iterative methods (GMRES
and Craig’s method), and three domain-decomposition preconditioners, is compared in the context of our
adaptation scheme. We report on a series of numerical experiments which illustrate the effect of adaptation
on the performance of typical domain decomposition methods.

1. Introduction. An important measure of the maturity and relevance of a sub-area
in applied mathematics is the degree to which algorithms from that sub-area become stan-
dard tools for solving “real-world” problems in science and engineering. Most of the early
work in domain decomposition has been on unrealistic model problems—necessarily so,
since fundamental theoretical understanding is achieved in this way. However, significant
steps are being taken to extend these results and algorithms to more general problems.
Instead of considering only two-dimensional, self-adjoint, scalar elliptic equations, work is
now focused on non-selfadjoint operators, on systems of equations, and on time-dependent
and nonlinear problems. These are important characteristics of realistic problems in science
and engineering applications. Good performance in the presence of such characteristics is
essential if domain decomposition is to be a method of choice for solving large PDE problems
on parallel supercomputers.

Another important component of modern numerical methods for realistic problems is
adaptive gridding. Whether due to complicated geometries, or to nearly singular behavior
in problem coefficients or solution, the need for grid adaptation is pervasive. Domain de-
composition algorithms must allow for the presence of this powerful tool in large-scale PDE
calculations. Unfortunately, extensive use of highly irregular grid structures can cause prob-
lems for a family of parallel algorithms such as domain decomposition. Parallelism is obvi-
ously much easier to exploit in an algorithm featuring extremely uniform computations over
uniform data structures. In fact, an important advantage of domain decomposition is that
it is 2 convenient and high-level way to decompose a large problem into many subproblems
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of similar size. Grid adaptation—particularly extensive use of local grid refinement—can
do considerable damage to the parallel performance of a domain decomposition algorithm.
Furthermore, convergence analysis of domain decomposition methods generally assumes a
uniform decomposition. Irregular grids or decompositions make such analysis very difficult.

Careful studies of adaptation in the context of domain decomposition have only begun
to appear. Gropp and Keyes [6, 7] look at local grid refinement in the context of a domain
decomposition scheme, restricting the adaptation to conform to a predetermined regular
tensor product decomposition of the domain into “tiles”. Ewing [5] also requires that the
local refinement take place uniformly within a prescribed coarse “macro-mesh”. Bramble,
et al. [1] consider local grid refinement in connection with a preconditioner based on domain
decomposition, although they have not reported performance of a parallel implementation.
Each of these papers attests to the difficulties inherent in trying to use grid adaptation in
a parallel environment rewarding regularity.

Adaptive grid methods generally take one of two approaches: local grid refinement
or grid motion. Hybrid schemes—in which locally refined grids move with the solution
of time-dependent problems, for example—are also common. Moving grid methods are
logically more regular than local refinement methods, and thus may prove more amenable
to parallel implementation. A common way to view moving grid methods is in terms of
a function which maps points in a curvilinear (adapted) grid on the problem domain to a
uniform rectangular grid on a computational domain. By using this function as a change of
variables in the original PDE, one can define an equivalent problem on the computational
domain. In this way, irregularity introduced by grid adaptation is located in the transformed
PDE, rather than in the grid and its associated data structures. Note that the transformed
PDE operator will in general have cross-derivative terms, first derivative terms, etc., even
if the original operator is very simple.

It is not possible to adapt as effectively to extremely difficult problems with a strict
moving grid approach. Furthermore, many of the largest unstructured grid problems come
from grids that are specially designed to conform to an irregular structure such as an air-
foil or fuselage; often these grids represent a patchwork or hierarchy of grids. So a certain
amount of unstructured computation will always be present, at some level. It seems likely
however, that locating a considerable amount of the irregularity due to adaptation in a
transformation of the PDE rather than in the grid can only help parallel performance. The
idea is to preserve as much structure as possible—in grid, data structure, load balancing,
etc.

In this paper we consider adaptation applied at a high level—in the choice of the de-
composition itself. We use a moving subdomain strategy, defining the subdomains (rather
than individual grid elements) as the image under an adaptive mapping. We then solve
an equivalent transformed problem on a uniform decomposition. The resulf is a conve-
nient and efficient high-level mechanism for adaptively choosing the decomposition. We are
also guaranteed a balanced load, without having to resort to complicated load balancing
heuristics.

Our goal is to better understand how some typical domain decomposition algorithms
behave in the presence of moving grid adaptation. The remainder of the paper is arganized
as follows. In Section 2 we describe the preconditioned iterative solvers we want to compare.
Section 3 defines a parameterized model problem, on which the numerical experiments
described in Section 4 are run. We also describe in Section 3 a simple adaptive grid scheme
used for these experiments. Concluding remarks appear in Section 5.

2. Preconditioned iterative methods. We briefly recall the details of the domain
decomposition schemes under consideration. Since this paper is not a survey of adaptive grid
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or domain decomposition methods, but rather about the interaction between such meth-
ods, it is hoped that the methods we have chosen are sufficiently representative to allow
more general conclusions to be drawn. Moving grid methods can yield transformed PDE
operators with very difficult characteristics (strongly non-selfadjoint, rapidly varying coef-
ficients, etc.). Hence, it is important to have a robust combination of iterative method and
preconditioner. Experience has shown that applying adaptation can result in considerably
slower convergence for some preconditioned methods (see [12]).

‘We look first at two iterative solvers for general systems of linear equations Az = b,
GMRES and Craig’s method. In Section 2.3 we describe two variations of a preconditioner @
for these iterative methods, based on domain decomposition. We apply the preconditioner
on the right, meaning we solve AQ™'y = b, where Qz = y. This requires one post-
convergence preconditioner solve.

2.1. Generalized minimum residual method. The Generalized Minimum Resid-
ual (GMRES) method described by Saad and Schultz [13] is a widely-used iterative solver
for nonsymmetric linear systems. It was derived as a generalization of an algorithm for
indefinite symmetric systems called MINRES (see Paige and Saunders [10]). GMRES is
based on Arnoldi’s methods——a Gram-Schmidt-like process for computing an orthonormal
basis {v1,..., v} for the k dimensional Krylov space K = span{vi, Avi,..., AF-1y;). The
initial vector v; is taken as ro/||roll2, where 7g is the initial residual. The kth step of GM-
RES requires one matrix-vector multiply and O(k) vector operations; all previous vectors
vy, ..., V5 are needed to compute vri1. On convergence, the approximate solution zj is
found by solving a (k + 1) x k upper-hessenberg least squares problem for the coefficients
of zj with respect to the Arnoldi basis. Givens rotations are performed during each step
of the algorithm, so that only a triangular system solve is required in order to find these
coefficients.

In practice the extra O(kn) storage for the Arnoldi vectors, and the O(kn) work required
for the vector operations in each step, make “restarting” GMRES an attractive alternative.
Hence, “GMRES(m)” refers to an algorithm in which the approximate solution is computed
every m steps (unless convergence occurs sooner), and this solution is used as an initial guess
for a restart of GMRES. In this way, the number of Arnoldi vectors saved at any one time
ranges from 1 to m.

GMRES enjoys several attractive theoretical properties. It can be shown that the kth
iterate ¥z = o+ z computed by GMRES has minimum (two-norm) residual overall z in X,
An easy consequence is finite termination—in exact arithmetic, the algorithm is guaranteed
to converge in 7 steps (one hopes for much faster convergence, of course). Furthermore, Saad
and Schultz show that GMRES(m) always converges, for any m, if 4 is positive real. If A is
indefinite, GMRES(m) can sometimes stall, failing to make any further progress. (See [8],
where very large values of m were needed in order to achieve convergence). Obviously, a
good preconditioner is crucial to the efficient performance of GMRES for many systems.

2.2. Craig’s method. As a base-line for our comparisons, we also consider Craig’s
method [4], a classical conjugate gradient scheme applied to a variant of the normal equa-
tions. In particular, Craig’s method solves AA'z = b, where A%z = 7. The iterates 23
minimize the error norm ||z — ]|z over the translated Krylov space

zo + span{A’rg, A(AAY)r, ..., A((AADF1rg).

Bach iteration of Craig’s method requires two matrix-vector products—one each with A4
and A®. Preconditioning requires matrix solves with @ and Q*. Although Craig’s method is
theoretically applicable to any nonsingular problem, its convergence rate is governed by the
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square of the condition number of 4, and hence can be extremely slow. Still, with a good
preconditioner, Craig’s method often represents a “slow-but-sure” approach for difficult
problems (see [8], for example).

2.3. Preconditioner. As preconditioner we use two variations of a block triangular
approximation to the matrix A. Preconditioners of this kind, sometimes termed Schur
Complement preconditioners, are widely used (see [3], [6], and [9], for example). We use
a centered nine-point, second-order finite difference discretization, since a five-point stencil
does not achieve second-order accuracy for cross-derivative terms. The preconditioner () is
best described in terms of a special ordering of the equations and unknowns. The idea is to
order the grid points interior to a subdomain first (one subdomain at a time), then points
falling on a single interface between subdomains second, and finally the “crosspoints” at
the intersection of two interfaces third. The domain decomposition preconditioner is then
defined in terms of approximations to the various equations, using the same ordering. In
particular, let

An Az Agg An Az Ags
A= An Axx A and Q=] 0 Az Axs/|,
Az Az Ass 6 0 Aa

where the first block row of A and @ represents interior equations, the second row interface

equations, and the third row crosspoint equations. Notice that Ay; is itself block diagonal,

with one block for each subdomain. Az would also be block diagonal, with one block for

each interface, except for interactions between unknowns on different interfaces. With a

five-point stencil, Aa; and A;3 would be zero.

The preconditioner @ is defined as follows. The subdomain interior equations are solved
exactly as part of the application of the preconditioner. We use band Gauss elimination
with no pivoting. The interface equations are replaced by omne of two block diagonal ap-
proximations A,z described below. The crosspoint equations Aa3 are taken as a coarse grid
discretization of the original PDE, involving only the crosspoints. In this way, an applica-
tion of the preconditioner requires first a crosspoint solve, then independent interface solves,
and finally independent subdomain solves. In a parallel distributed-memory implementa-
tion, where each processor is responsible for one or more subdomains, the subdomain solves
require no communication, the interface solves require communication with neighbors, and
the crosspoint solve requires global communication.

Choosing a good interface preconditioner is crucial to the performance of precondition-
ers such as the one we are considering. The paper by Chan and Keyes [3] compares five
different choices for a two-subdomain case. We consider two of those choices here:
Tangential (TANG). The interface equations are replaced by a “tangential” approxima-

tion in the preconditioner, where derivatives normal to a given interface are simply
assumed to be zero. Gropp and Keyes [6] found TANG to work well in combination
with an upper triangular preconditioner such as this.

Interface Probe (PROBE). The idea is to take Ag, as an approximation of the Schur
complement Agp — AzIAu Ayz. We set Agy = Agg — Ep, where Ey is a diagonal
matrix satisfying Egv = A21A11 Aygv and v = [1,...,1]. Eg can be thought of as
a diagonal approximation to A-HAH Ajs in that it has the same row-sum as this
matrix. Notice that PROBE requires one initial subdomain solve to compute Az,
Chan and Keyes report that PROBE is generally the most robust of the five they
tested. This method is called the modified schur complement method in [9].
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TABLE 1
Tterations and time for Craig’s method and GMRES, with a =100, k™' =64, H™' = 8.

CRAIG GMRES

TANG PROBE | TANG | PROBE
101 53| 337 174126 1138 17
100 52| 361 186 |26 11|37 17
109 57| 398 205|128 12{39 18
126 66| 449 232 {31 13{39 18
151 78| 498 257 |35 15|41 19
190 98] 578 297 |38 17143 20
234 121 694 358 |41 19145 21
302 156 | 836 430 |46 22|48 23
443 228 11109 570 | 57 27 | 54 26
963 494 | 1874 961 |75 34 |67 30

000 OO W~ OD

3. Model problem and adaptation scheme. Having stressed in Section 1 the im-
portance of developing domain decomposition algorithms for realistic problems, we now
proceed to define a completely arbitrary model problem for testing purpose. This incon-
sistency is endured for the moment so that we may first understand the behavior of the
methods described above in a controlled, easily tuned, setting. In particular, the numerical
experiments summarized in Section 4 are all based on the elliptic equation

a(:z:, y)uz:c + Uyy = f(mv y)7

where the coefficient a(z,y) and true solution u(z,y) are given by

a(z,y) = exp[-a((z -1+ (y— 1)),
we,y) = exp[-100((z - 0.1)2 + (y — 0.1)%)] a(z - y(y ~ 1).

‘We impose Dirichlet boundary conditions on the unit square and choose f so that the true
solution is as indicated. Note that both the solution and the coefficient of uz, have peaks
at (.1,.1), with the strength of the peak in a(z,y) adjusted by the parameter o.

It is not difficult to construct an adaptive mapping for a problem such as this, where
the area of difficulty is located near a single point. We use a method (point a priori [11])
which moves grid points toward a specified point in the domain, and does so with “strength”
B. Larger values of 8 correspond to a stronger attraction toward the given point. In the
experiments reported below, the effect of varying the problem parameters o and @ is studied.

4. Numerical results. Tables 1-4 give data summarizing various experiments using
the methods described above. We use h to refer to the grid spacing of the global grid;
H refers to the resolution of the subdomains (e.g., H~! = 4 indicates a 4 X 4 subdomain
decomposition). The iterative solvers are considered to have converged when the initial
residual is reduced by 10~°, with an initial guess of zero. We restart GMRES after 50
iterations (i.e., this is GMRES(50)). All data was collected on a DECStation 5000 running
Ultrix 4.1, using double precision and the MIPS Fortran compiler f77. In the tables, where
iterations and time are reported, the left column is iterations, and the right is time in
seconds.

Table 1 gives iterations and time to convergence for the two iterative solvers using
both versions of the preconditioner, for various choices of the adaptation parameter §. The
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TABLE 2
Time for Gauss Elimination, and iterations and time for GMRES, with o = 100, H /h =4,
f=0 B=5

At GE TANG PROBE TANG PROBE
16 0.13 117 030)17 0.28]21 0.38 )18 0.32
32 141119 165(23 1.95]29 2.60 | 29 2.57
64| 18.09 119 7.47126 10.33|39 17.30 44 20.08

128 | 333.25 | 19 33.72 | 27 49.25 | 48 105.47 | 62 128.30

TABLE 3
Iterations and time for GMRES, with o = 100, A~ = 128.

B=0 =5

H-T| TANG [PROBE | TANG | PROBE
2] 5 8] 7 95|25 153 |21 143
4[31 101(34 112|40 131 |41 137
8136 83]62 14749 12370 163
16 |27 49|44 93|52 114 |70 142
32119 34|27 50|48 107 {62 129
64|11 43016 53)35 107 |45 139

problem size is fixed. It is evident that Craig’s method is not competitive, especially when
preconditioned with PROBE. The convergence rate of Craig’s method is just too slow for
these problems. With no preconditioning (not reported here) CRAIG requires nearly n
iterations to converge, while GMRES still converges in much less than n iterations. Table 1
also points strongly to a deterioration in convergence for all methods as 8 grows. Of all the
methods, the PROBE preconditioned GMRES seems to suffer the least from increasingly
strong adaptation, but its advantage over TANG is small.

In Table 2 we summarize results when the problem size increases, with the relative
resolution H/h fixed at 4. We also include time for a direct solve on this problem, using band
gauss elimination. The TANG preconditioner is clearly better when there is no adaptation
(8 = 0); for B = 5 the advantage is not nearly as strong. Notice also that the number of
iterations remains relatively unchanged as h~! grows if 8 = 0, but that it grows steadily if
k™! = 5. A recent report of Cai, et al. [2] describes a related algorithm that could improve
this situation. Their method requires two subdomain solves per iteration, but it achieves
a very slow growth in the number of iterations as & is refined (assuming H/h is constant).
The theory in [2] requires large H if the problem is strongly non-selfadjoint however.

The effect of varying the number of subdomains, with global grid resolution k1 fixed, is
illustrated in Table 3. The results are somewhat counter-intuitive. As expected, the number
of iterations first increases with H~! as the subdomains become smaller, but eventually it
begins to decrease as the size of the crosspoint system becomes larger. However, one also
expects that the total time needed to converge would initially decrease with increasing H1,
reach a minimum, and then begin to increase again. This pattern is not repeated here. Part
of the explanation seems to lie in the accidents of where the peak in a(z,y) happens to lie
with respect to the decomposition. One of the potential advantages of our adaptive domain
decomposition approach is that a point singularity, such as is found in our model problem,
may be located in a single subdomain, so that the preconditioner essentially solves this
region exactly. H one is not careful however, the singularily may fall on an interface or at
a crosspoint, in which case the preconditioner is likely to have difficulty. Note also that
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TAsBLE 4
Tterations and time for GMRES, with h~™! =128, H* = 32.

B=0 B=5
o | TANG | PROBE ILU TANG | PROBE ILU
019 34|29 54|74 16965 136 |83 172|146 352
1119 34;28 52|70 16057 123 |74 152|138 327
10 {19 34|28 52|57 135|49 11064 133|111 263
100119 34)27 50|57 135|48 107|62 130|105 253
1000 {18 32|27 50|58 136 |47 104 |62 130|104 252

the minimum sequential time is achieved at H—1 = 32. The results would be different in a
distributed-memory environment, where a large crosspoint system is to be avoided. Further
investigation of this algorithm on such systems is needed.

Finally, Table 4 shows an interesting effect due to varying a, the parameter that adjusts
the strength of the peak in the PDE coefficient of u,. We see tha.t performance actually im-
proves with increasing «. This may be due to the fact that a larger & in this problem serves
more to localize the nearly singular behavior than to increase the strength of singular be-
havior throughout the problem domain. This allows the preconditioners to perform better.
We have included here results for an Incomplete LU Factorization (ILU(0)) preconditioner
as well. ILU is one of the most popular preconditioners for Krylov subspace methods in
many application areas. We see that the domain decomposition preconditioners are su-
perior for our applications. It is generally easier to parallelize the domain decomposition
preconditioners as well,

5. Conclusions. We have studied the coavergence behavior of two iterative methods
and two domain-decomposition preconditioners, in the presence of moving grid adaptation
of various degrees. A moving subdomain adaptive approach is attractive in that it provides
a convenient high-level way to achieve a certain amount of adaptation without sacrificing
a regular, uniform decomposition. Preconditioners based on domain decomposition can be
especially effective in this situation if the subdomains are defined so that areas of difficulty
in the problem are located in a single subdomain. If this is possible, then the preconditioner
has the advantage of doing essentially an exact solve in that subdomain. A purely matrix
based preconditioner such as ILU does not have this advantage.

Of the methods considered here, GMRES with the tangential interface preconditioner
is generally best, although there is some evidence that the interface probe preconditioner is
more robust in the presence of strong adaptation. The performance of the various methods
is still too sensitive to the strength of the adaptation, however. A more robust combination
of iterative solver and preconditioner should be found, so that the characteristics of the
transformed PDE operator (large non-selfadjoint terms, cross-derivative terms, etc.) do not
cause such serious problems. These concerns apply to more than just the adaptive grid
framework too, since even without adaptation such problem characteristics occur.
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