CHAPTER 29

Parallel Computing and Domain Decomposition

William Gropp*

Abstract. Domain decomposition techniques appear a natural way to make good use of parallel com-
puters. In particular, these techniques divide a computation into a local part, which may be done without
any interprocessor communication, and a part that involves communication between neighboring and distant
Processors.

This paper discusses some of the issues in designing and implementing a parallel domain decomposition
algorithm. A framework for evaluating the cost of parallelism is introduced and applied to answering
questions such as which and how many processors should solve global problems and what impact load
balancing has on the choice of domain decomposition algorithm. The sources of performance bottlenecks are
discussed. This analysis suggests that domain decomposition techniques will be effective on high-performance
parallel processors and on networks of workstations.

1. Introduction. Domain decomposition methods have become very popular in re-
cent years. Of the many advantageous features claimed for these methods, the ability to
be used on parallel computers is one of the most cited and least examined. In this paper,
we discuss some of the issues in developing an efficient parallel domain decomposition algo-
rithm and the reasons that domain decomposition is, in fact, a good approach for parallel
computers. The paper starts by describing the structure of domain decomposition methods
as it applies to parallel computing. Then, the realities of parallel computing are discussed,
and a mathematical model for the additional terms in a time-complexity analysis of a par-
allel algorithm is described. A key feature of this model is its two-level memory structure.
This two-level structure is shown to reflect the structure of many domain decomposition
algorithms. Finally, the overheads and bottlenecks in these algorithms are discussed. For
the reader who wishes the punchline in advance, there are two major points to this paper.
First, domain decomposition algorithms with their two- (or three-) level structure efficiently
match the two- (or three-) level structure of actual high-performance parallel computers.
Second, the costs of interprocessor communication and load balancing are important and
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Fia. 1. Sample communication structure of domain decomposition algorithms

can effectively gnide the design and implementation of domain decomposition algorithms.

For a more detailed examination of the time complexities of domain decomposition
algorithms, see [6, 15]. For a sampling of results about parallel domain decomposition
methods, see [1, 3, 7, 8, 9, 10, 11, 14, 16].

2. Structure of Parallel Domain Decomposition Methods. Domain decomposi-
tion methods seem ideally suited for parallel computers. In their simplest form, each domain
may be solved on a separate processor, yielding an apparently perfectly parallel algorithm.
For a number of reasons, this is an illusion. Most important, any domain decomposition
algorithm involves some communication or coordination between the computations on each
domain; a typical case is shown in Figure 1.

The most important fact to notice in Figure 1 is that there are three levels: the domains
themselves (shaded in gray), communication with neighboring domains (double headed ar-
rows), and global communication (the wire frame connecting all of the domains). These
levels correspond to the operations in a domain decomposition algorithm, which usually in-
volves three kinds of computation. These computations are an interior solve, an evaluation
of the matrix-vector product, and the computation of a small number of quantities over the
whole domain (e.g., dot products, cross-point solutions). The efficiency of a domain decom-
position method depends on how well these levels can be mapped onto a parallel computer.
As we shall show, from the point of view of parallelism, it is the global communication
part that has the largest impact on the available parallelism. Determining the best way to
handle this part is the focus of this paper. No choice of method will eliminate some loss of
parallel efficiency at this step.

These observations on communication requirements apply to both implicit and explicit
algorithms, and to “asymptotic” domain decomposition (where the domains are chosen
based on the local properties of the equations). For problems without a global part (the
“wire frame” in Figure 1), load balancing is the biggest concern.

3. Realities of Parallel Computing. In a perfect world, parallel computers would
be as easy to use as uniprocessor computers. Unfortunately, parallel computers represent
a series of design compromises. Of course, any parallelism in the processor is an admission
that a single processor could not be made that met desired performance or cost require-
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ments. There are two principal places where parallelism is introduced in order to improve
performance: processors and memory. The kind of connection between the processors and
the memory is the primary basis for distinguishing among types of parallel processor. Com-
mon forms of processor-to-memory connection are shown in Figures 2 and 3. These two
forms are distinguished by how much of the total memory each processor can access. In a
shared-memory parallel computer, all of the memory is accessible to every processor. Com-
munication between processors is carried out by writing and reading shared memory. In a
distributed-memory parallel computer, only the memory attached to a processor is accessible
by that processor. Communication between processors is carried out by sending messages
from one processor to another. In both kinds of parallel computer, it takes more time to
access a memory location that is “far away.” The penalty for accessing faraway memory
can be large; actual values range from a factor of 3 (on a network-based shared-memory
machine) to several orders of magnitude (on a distributed-memory machine). Thus, it is im-
portant to manage the use of memory in order to achieve good efficiency. The best approach
is to understand the sources and relative sizes of the costs; this can be done in a relatively
simple way by modeling the cost of communicating information between processors.

A number of metrics for measuring the performance of a parallel algorithm have been
proposed. The simplist are efficiency, defined as E, = T1/(pTp), and speedup, defined as
Sp = Ty /T,. Here, T} is the time to execute an algorithm on a single processor, and T}, is the
time to execute the same algorithm on p processors. At the very least, we wish 9.5, /Op >0
(otherwise, adding processors slows down the computation). A perfectly parallel algorithm
has E = 1. It is important to note that since 7j and T, refer to the same algorithm,
neither speedup nor efficiency is a reliable indicator of quality. For example, by picking
a poor, computation-intensive algorithm, the efficiency can be made very close to one.
Perhaps the best measure of efficiency would have Ty refer to the best algorithm on a single
processor. Unfortunately, it is difficult to get any agreement on what the best algorithm
for any problem is.

3.1. The Important Parameters. In analyzing the time complexity of a parallel
program, there are two new major costs. One is communication, and the other is load
balancing. For most distributed-memory computers, communication costs may be modeled
as

s+ rn,

where s is the start-up time, r is the time to transfer a single word, and n is the number of
words. For a bus-oriented shared-memory computer, the cost is roughly
™
min(k, p)’

where k is the maximum number of simultaneous requests on the bus [13].

It is convenient to express the times s and 7 relative to the cost to do a single floating-
point operation (f), and we will do so throughout this paper. For many (but not all)
distributed-memory parallel computers,

s>»r>f.

Note that this gives a very clear two-level structure to memory. Local memory may be
accessed quickly (typically with time approximately f). Global memory, that is, memory
on another processor, can be accessed only at much greater cost (s> f)
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3.2. Load Imbalances. In any parallel computation where the parallel processors
must coordinate their work, it is difficult to keep all processors busy all of the time. Often,
some processors have to wait for others to finish their work before they can proceed with
their next task. For example, consider the case where p — 1 processors have work W; and
the last has work Wy > W;. The best possible speedup is then

(p— 1)W1 + W,
W,

W,
= 1+(p—1)ﬁ}—:-.

Sp

Because the smallest practical unit of work is not a single arithmetic operation, but a
“module” or “subroutine,” it becomes increasingly difficult to keep the range of work small
as the scale of parallelism increases.

4. Unavoidable Overhead. It is natural to ask whether an efficient, perfectly parallel
algorithm for solving partial differential equations (PDEs) numerically exist. Unfortunately,
there is no such algorithm. Worley [17] has shown that perfectly parallel algorithms for
PDEs do not exist and that, for a given accuracy, there is a lower bound on the fime it will
take to achieve this accuracy. It is important to note that this is not a bound on speedup:
by adding more purely local work, speedup can be made arbitrarily close to 1.

In practice, this overhead shows up as local communication, global communication, and
coordination. Each of these may be traded off against the others, though with potentially
great cost. For example, by using only local communication such as in a relaxation algo-
rithm, the cost per iteration may be kept independent of the number of processors, but the
algorithm will require more iterations to compute the solution. Asynchronous algorithms
do away with the coordination cost, but again at a penalty in iteration count. Thus the true
goal in the design of a parallel algorithm for solving a PDE is to achieve the most efficient
combination of these overheads, where efficiency is in terms of minimum elapsed time. Do-
main decomposition algorithms are good candidates for efficient parallel algorithms because
their structure matches that of parallel computers.

4.1. The cross-point problem. The global cross-point problem is source of both
the algorithmic efficiency of many domain decomposition algorithms and the parallel ineffi-
ciency. In this section, the behavior of various approaches to solving the global cross-point
problem is analyzed.

4.2. Duplicate work. One sometimes surprising feature of parallel algorithms is the
fact that it is sometimes more efficient for many processors to compute the same result
(a redundant computation) than to have one processor compute and distribute that same
result. It turns out that the solution of the cross-point system in domain decomposition
algorithms can be such a case. In fact, many of the issues in analyzing a parallel algorithm
are illustrated by finding an answer to the question, “How should the cross-point grid system
be solved?”

There are, of course, an great many ways to solve the cross-point system. Some obvious
possibilities are

1. in parallel,

2. on one processor,

3. on all processors separately, and
4. on a subset of processors.



354 GROPP

Solve

-Exchange

Fic. 4. On all processors. A parallel solve looks like this, except the solve and exchange steps are
intermized.

Naturally, the answer to the question will depend not only on the details of the parallel
computer but also on the particular choice of numerical algorithm. To cover the most
ground, we shall consider several different numerical algorithms for solving the linear system.
Also, for concreteness we shall consider an n X n grid of cross-points and a distributed-
memory parallel computer with p processors. Note that since the cross-point system will
probably be small relative to the size of the parallel processor (probably n® = p), results
that are for n/p — co may be misleading.

4.3. All or one. Let us first look at the question of solving the cross-point system on
all the processors in parallel, or solving the problem in serial on one (or more) processors.
The critical point here is that there is a tension between communication and computation.
We can look at the minimum costs to communicate the data first, and then compare with
the computational costs.

If each processor solves the cross-point system, the only communication is the collection
of the right-hand-sides. This is illustrated in Figure 4. The communication takes time

Teseh = (3 + n’r)logp.

If we use banded Gaussian elimination on the each processor to solve the system of equations,
the total cost is

Tse'rial ~ n3 + (5 + nzf') lng
Now, consider using parallel banded Gaussian elimination. The cost for this is
3 n?
Tpa'rallel >n /P+ 2(p — 1) S+ ?7‘ R
where important load-imbalance effects have been ignored. (See [4, 12] and references there
for a detailed discussion of the time complexity of parallel banded Gaussian elimlination.

The time here is for only the solve and does not include the cost of factorization.)
For the parallel solve to be faster, we need

2
n2fp+2(p—1) (5 + %7‘) < n®+ (s + n*r)logp.
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Fia. 5. Comparison of serial and parallel banded Gaussian elimination. The solid line is the time for
the parallel algorithm; the dashed line is the time for the uni-processor algorithm on each processor.

The high communication cost of the parallel solver will often overwhelm the reduced com-
putation. For example, consider the case of one cross-point on each processor: n? = p.

Then we would need
n+42(n? - 1)(s+r) < n® + (s + n’r)2log n.
For parallel computers with large s, this is very roughly
m2%s < n® 4 2(s + n®r)logn.

This inequality will not be satisfied if both n?s > n® and n%s > 2(s + n’r)logn. The first
is just s > n = \/p, which is true for most distributed-memory computers. The second is
roughly s > rlog p, which is again true for most distributed-memory computers. Thus, for
this relatively small system of equations, it is slower to use many processors than to use
onle Processor.

If a method other than banded Gaussian elimination is used, then the analysis must be
repeated. Note, however, that a sufficient condition for the solve on a single processor to

be more efficient is for

Tserial < Tpa.rallel communication

For example, if multigrid (V cycle) is used instead of banded Gaussian elimination, each
half-cycle requires log(n) communication steps, with the ith step sending data a distance
of 2¢ (see [2] for a discussion of the time complexity of parallel multigrid). If there are 7
cycles, the time will be roughly

logn

Tparallel communication — I( E(S + 2i7')) = I(S logn + T&’I‘),

==
and the serial time will be

Treriar = In? + (s + n?r)logn.



Other work

Fi1c. 6. On one processor

Comparing these, we see that for the parallel version to be faster, we need
I(slogn + nr) < In? 4+ (s + n’r)logn.
For p = n?, this reduces to

I(slogn + nr) < In? + (s + n’r)logn,

or roughly
Islogn < In?
or
2
§ < “ = 2p .
logn  logp

While this is a less severe constraint than Equation 4.3, it is still a stringent requirement,
and one that most distributed memory parallel computers do not meet.

Thus it can be cheaper to do duplicate work. (An intermediate choice is suggested by
Figure 5—use clusters of pg < p processors.) The problem here is the communication time;
a method requiring less computation may not require less communication, thus reducing the
method’s parallel efficiency. Another way to look at the situation is that there is not enough
data per communication. A similar computation can be carried out to decide whether to
Jactor the problem, when using Gaussian elimination, on all or some of the processors.
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4.4. Overlapped Work. Once we have decided that it is better to solve each cross-
point problem on a single processor, we must ask whether it is better to solve on a single
processor and distribute the results to the other processors, or-solve the identical problem
on all of the processors. Intuitively, we might expect to be able to accomplish some other
“useful” work on the other processors if we solve the cross-point problem on a single pro-
cessor. This is illustrated in Figure 6. However, this requires us to distribute the solution
that is computed on the single processor, and we shall see that this can be a significant cost.
The cost has two components: balancing the work and sharing the results of the cross-point
grid solution.

An example of a method that allows the overlap of the solution of the cross-point
problem and other work are the additive methods, such as the additive Schwarz method [5].
These methods allow all of the subproblems to be solved in parallel, seemingly avoiding any
coordination overhead. However, different phases of this computation have differing loads:

¢ Solves—one processor has the cross-point system in addition to local solves.
e Matrix multiply, dot products, updates—work is proportional to the number of
mesh points.
While the differing loads presented by these two phases are an important consideration (see
Figure 7), we shall analyze only the additional communication cost incurred by having only
one processor solve the cross-point system.

4.5. Distributing the solution. Let the cross-point system be solved with an opti-
mal method:

2
Tsorwe = cn”.

The total cost to solve the cross-point problem on one processor and distribute is (summed
over all processors)

2pTcall + Tootve-
If each processor solves the same cross-point problem, the total time is
p(Tcoll + Tsol'uc)-

Less total time is consumed in solving the cross-point problem if

-1
Tcoll < 4 Tsolue-

This is true if

-1
(s+rnt)logp < (pp )en2

(p——l) c s
ro< p Jlogp n?
c _s
logp n?

Since s/n? is likely to be small, this depends critically on c. For fast enough solvers, the cost
of moving the data around can exceed the cost of solving the cross-point system (particalarly
if an approximate solution can be used). Thus, there may be no savings in overlapping the
work of the cross-point system with other work.
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Fig. 7. Sample load distribution when one processor solves the cross-point problem. Dark gray indicates
communication (an exchange of data), light gray idle or wasted time, “coarse” the solution of the cross-point
problem, and “fine” operations on the subdomains.

It is also important to note that even if the above analysis suggests that it is best to
solve the cross-point system on one processor, Figure 7 shows that there can be an additional
cost. Since the application of the preconditioner contains an operation on the cross-point
system but the formation of the matrix-vector product does not, it is impossible statically
to equally distribute the computational load across all of the processors. The amount of
imbalance depends on details of the algorithm and should be considered in chosing an
implementation strategy.

5. Domain Decomposition on Networks. Now that we have a description of do-
main decomposition as appropriate for computers with two-level memory hierarchies, we
can look at other computer architectures that might be appropriate for domain decompo-
sition algorithms. An obvious candidate is a network of workstations. A network of 50
workstations can have significant computing power (at 4 megaflops each, such a network
has an aggregate power of 200 megaflops), but, more important, such a network has a very
large amount of physical memory. For example, with a mere 16 megabytes of memory per
workstation, a 50-workstation network will have 800 megabytes of physical memory. Thus,
a modest-sized network of workstations has enough memory and computational power to
attack significant problems.

This is a good point to raise another issue. Why not use a single workstation and
exploit virtual memory? (Another version of this question is, Why not let parallelizing
compilers figure out how to organize the algorithm?) The answer is that page thrashing
reduces effective computation rate. This is illustrated in Figure 8, where the computation
rates for a simple calculation on a workstation are shown. Knowledge of this effect (and
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Fic. 8. Computation rates for a DAXPY operation as a function of vector length on a Sun SPARCSta-
tion 1.

effects related to cache memory) is important; it explains so-called superlinear speedup that
is sometimes observed. An example is presented below.

The cost of communicating between processors in a network of workstations can be mod-
eled just as the distributed-memory parallel computers were above. The only difference is
that the parameters s and 7 will probably be somewhat larger. To see how this commu-
nication cost affects the performance of domain decomposition algorithms on a network,
consider a three-dimensional problem on an n X n X » mesh and the cost of computation of

the matrix-vector product.
If we assume that the subproblems (each domain) fit in physical memory, the time to
compute one iteration or step of the problem is

n3
2(s + rn?) + 77

where the domain has been divided into n X n X n/p slabs. The speedup is

733

S, = ————
v 2(s+rn2)+1‘pi’

s0 0.5,/8p > 0. Thus, adding processors improves the performance. The one special case is
p = 2; here, as long as

n3
2(8 + T?Lz) < —;‘,

the parallel version will be faster.

There is a more important effect that is related to the discussion of “page thrashing”
above. Let the problem be so large that it does not fit in the physical memory of 3 single
processor. Then the time on a single processor may be modeled as

na,
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where o > 1 represents the scaling of processor speed when a problem does not fit in
memory (« is about 20 for the computation in Figure 8). Let the parallel version of the
algorithm use enough processors so that the problem fits within the physical memory of the
ensemble of processors. Then, for n = 100 (16-Mbyte workstation), the speedup is

o

2(s+rn?) + 1;1
ap
2p(s+ r10%)/10% 4+ 1
ap
2x 10-%(s +r10%) 4+ 1.

Even for large s and 7, this is nearly ap, “superlinear” speedup.

This is one of a few situations where small degrees of parallelism are interesting—
fitting a problem into memory that would not fit before. Otherwise it is better to use a
single processor and wait a little longer.

6. DD and Block Methods. Block methods are methods that divide a problem into
blocks and process one block at a time. Such approaches are important in getting the
maximum performance out of many vector and matrix operations, including the solution
of dense systems of linear equations. These methods do not reduce the actual number of
floating-point operations that are used (in some cases, there are actually more operations
performed). Instead, they reduce the number of times a data item is read from memory.
Block methods are usually organized with a single level of blocks; the block sizes are chosen
to match the fast memory of the target computer (cache or vector registers).

Thus, block methods can be considered a form of domain decomposition that has no
special treatment of interfaces or global problems. Further, some of the programming
tools and methods that have been developed for block methods may be applicable to more
general domain decomposition methods. In particular, domain decomposition methods can
take advantage of very efficient block method routines to perform local operations such
as matrix-vector product and solution of “interior” problems. Other programming tools
(such as array sections) can be used to simplify the expression of domain decomposition
algorithms.

Sp

7. Conclusions. In this paper we have looked at parallel computing applied to domain

decomposition algorithms. The keys points to remember are that

o domain decomposition reflects computer hardware (memory hierarchy);

¢ since perfect parallelism is impossible, speedup can be a misleading measure of

effectiveness; and

e time (and spacel) complexities may be easily estimated.
As an example of these points, an analysis of the cost of a global cross-point solver suggests
that even where the cross-point problem could be computed in parallel with other work, it
may be less efficient to do so.

The analysis here also suggests a number of future research areas. Focusing on minimiz-
ing computer memory use suggests that single-precision preconditioners may be valuable.
Some new RISC processors already have single precision performance that is as much as
double the double-precision performance; domain decomposition methods may permit the
use of this hardware with the preconditioner without loosing accuracy in the solution.

The highest-performance parallel computers of the future are likely to have more than
two important levels of memory hierarchy. These may include cache (or vector registers),
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local memory, off-processor memory, and mass-storage memory (such as high-speed disks).
Domain decomposition techniques may be used to make best use of this structure.

Domain decomposition is appropriate for both SIMD parallel computers and for net-
works of workstations. In particular, the large penalties for interprocessor communication
on networks of workstations represent an extreme case of the two-level memory structure
for which domain decomposition is so suited.
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