CHAPTER 34

Parallel Multigrid Methods on Composite Meshes

Hannes Sbhosny*

Abstract. The emphasis of many practical research activities in the area of multigrid methods
today lies in consiructing highly parallel multigrid algorithms for complex problems with general ge-
ometries. Examples are algorithms based on domain decomposition approaches. A straight forward
way to parallelize multigrid methods for local memory MIMD machines is based on the method of
grid partitioning. This leads to parallel programs with no (or minor) numerical changes in the se-
quential code. An alternative is using the Schwarz Alternating Procedure as the smoothing process
due within the multigrid algorithm. Both approaches will be compared from a practical point of
view with particular emphasis on aspects of communication complexity and software development.

1. Introduction. For a wide class of problems in scientific computing the (standard
sequential) multigrid principle has been proved to yield highly efficient numerical meth-
ods. Practical research activities today lie — among others ~ in constructing highly parallel
multigrid algorithms.

One (natural) parallelization approach for MG methods is governed by the grid parti-
tioning principle, which leads to parallel programs with no (or minor) numerical changes in
the sequential code. Whereas all grids in multigrid context have to be treated in a sequential
manner, the different multigrid components (relaxation, interpolation, restriction) can be
processed in parallel, provided each processor knows certain data from its neighboring pro-
cessors. In practice, the most efficient implementation is to store appropriate overlapping
zones to adjacent processors in its own local memory. Data exchange by message passing is
required to update the overlap areas after each computational step, a relaxation sweep for
instance.

The development of new parallel multigrid algorithms, which solve the problems with the
same accuracy without being numerically equivalent to a standard sequential method, might
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lead to a more efficient use of distributed memory multiprocessor systems (MIMD). Exam-
ples are MG algorithms using domain decomposition ideas. As these algorithms contain
less communication without significant degradation of convergence, numerical experiments
show higher efficiency.

The earliest domain decomposition method is believed to be the ”Schwarz Alternating
Procedure (SAP)” [13], which involves decomposition with overlapping regions. For a two—
dimensional domain Schwarz used the SAP method to prove the solvability of Dirichlet’s
problem for Laplace’s equation on the union of two overlapping plane regions, provided that
it is solvable on each region separately.

An alternating solver is developed by creating composite meshes containing a number
of subgrids that cover a subregion and overlap where they meet. Then multigrid methods
can be used to solve iteratively on each component. Functions (e.g. local solutions defined
on the local grid) are matched by interpolation at the overlapping grid boundaries.

In this way it is easy to parallelize multigrid methods for MIMD machines. First, the
problem is decomposed into loosely coupled subproblems mapped onto different processors.
Then, a Jacobi-like iteration invelves a parallel solution process and the communication
needed is limited to the "pseudo”-boundaries of the overlapping zones. Unfortunately, it
turns out that the rate of convergence depends on the width of the overlapping zone.

Following earlier ideas of W. Hackbusch [4] and J. Linden [6], the alternative is to use the
multigrid iteration, with some steps of Schwarz iteration as the smoothing process. Thus
defining the prolongations and restrictions blockwise on each local region we indeed get a
parallel multigrid algorithm.

Since the (SAP-) smoothing processes do not only operate on one fine grid but also
on coarser grids the overlapping topology is given on all coarser grids. The width of the
overlapping zone, however, decreases on coarse grids and leads to unreasonable coarse grid
corrections. To overcome this problem we extend the SAP smoothing technique to moving
pseudo-boundaries: On each MG level the overlap area remains unchanged in terms of the
mesh size. This approach turns out to be very efficient.

2. The Schwarz Alternating Procedure. We consider the solution of a second—
order uniformly elliptic partial differential equation Lz = f on Q , a closed, bounded
region in JR™ with a Lipschitz continuous boundary T := 89 . To simplify our presentation
we assume that L is the Laplacian and we have homogenious Dirichlet boundary conditions.
Thus,

—Auw = f in Q, u=1¢ on I. (1)

In order to define the SAP algorithin we decompose €2 into some overlapping subdomains.
Let § == [0,1] x [0,1]. We assume that Q is partitioned into g > 2 intersecting subdomains,
namely

Q= o , 0% = {(e,9) Q| F<z<at0<y<1} (2)

with QFNQHT £ {} for E=1,2,...,(p—1).In partlcular, we con51der o > 2 stripes with
zl=0,2f =1 and of <mk+1<:c <zfl k=1,2,

The width of the overlapping zones is dennted by d" > O thus 2k = gkt + dF | and
the boundaries of QF are defined as T := 8Q* N 4% := {(md,y) eQljo<y<i},
we={ehye o<y <1}, fork=12...,(p) . vk, vF are called the pseudo
boundaries.
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To discretize our model problem we use standard 5-point centered finite difference dis-
cretization for Q and a uniform mesh €, with grid size b := (hg, hy) on Q. Similar to (2)
we introduce the grid decomposition Q;, = UE_, Qf by

E . . P a’k—ws 1
B = | Ghesihy) € QL he = 2g=2 by = -0 (3)

for any k£ = 1,2,...,pp . With this notations the SAP iteration consists of solving the
following problems:

—Aup@ — f gk

"‘:’(tﬂ) ‘rg =0

k(i+1) _J0 ifk=1 k=1,2,...,p (4)
“n Lrlf,a - { ub=bl otherwise f e
0D e = Ok i ifk=p

h Yo,h up TP otherwise

for i=0,1,2,..., with an arbitrary initial approximation u§ and indices I, I, € {i,i + 1}.
If I1=4i+1 and I. =i we observe a generalization of the classical (multi-
plicative) Schwarz Alternating Procedure to an arbitrary number of subdomains. Note that
there is no parallelism in this algorithm as we must solve for the subdomains sequentially.
A possibility to parallelize the SAP iteration is to use the same strategy as for Gauss—
Seidel or SOR methods, namely using red-black ordering of the subdomains: Define I =
I, =1 if kisodd (red stripes) and I;= I, =i+1 ifkis even (black stripes). This
means that a subdomain of one color is related to subdomains of the other color only. Thus,
we can compute all subdomains of the same color in parallel (degree of parallelism p/2).

Choosing I;=1I.=1i we observe a synchronous, fully parallel algorithm, which can
easily be adapted to parallel MIMD machines (degree of parallelism p).

The convergence properties of this method have been studied in many papers, e.g. re-
cently, see P.L. Lions [7] , [8] . Summarizing the results, the Schwarz Alternating Procedure
is geometrically convergent as ¢ — oo and the rate of convergence depends on the width of
the overlapping zone. Roughly speaking, the larger the width of the overlapping zone, the
faster the convergence. Similar results hold for more general classes of symmetric boundary
value problems (higher order problems for instance) or for different boundary conditions on
I' (7], [8]). On the other hand, the larger the overlap region, the larger is the overhead of
supplementary computational work. Furthermore, numerical and theoretical results show
that the rate of convergence turns smaller if the number of subdomains is decreased:

Theorem 1 The convergence factor of the SAP iteration for model problem (1), (2) con-
sidering special overlapping geometry, d* = d = g, where D denotes the width of p > 2
(equally sized) stripes, then is
sinh(z d)
= 2 C
plp:d) sinh(n D)

T
s
© (p +1 )

3. Parallel multigrid methods. In this section we shortly summarize the standard
multigrid methods for MIMD architectures: On each grid level we perform ea.ch. of ﬂ"le
multigrid component (relaxation, computing of the defect, interpolatfcn, restriction) in
parallel. For more details consider [5], [9] or [12] and the literatur therein.
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o regular grid points
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Figure 1: Grid partitioning into overlapping (width=2) boxes

8.1 Notes on grid partitioning. One general parallelization concept for multigrid
methods on MIMD architectures is the method of grid partitioning. Since this method is
is described in many papers ( [14] or [15] for instance) we will only summarize its basic
concepts:

e A set of equally sized subgrids is created and then mapped onto the multiprocessor
machine in such a way that the distribution of grid points to the processes leads to a
balanced load of computation and communication among all nodes.

e All subgrids are processed independently in paraliel.

o The numerical algorthim is NOT changed, i.e. its sequential and its parallel version
are numerically equivalent and give exactly the same results.

o After each computational step the overlapping zones of the subgrids have to be up-
dated.

| processors [ p=4 [ p=16 |
fle — unllo 8.3D-6 | 8.3D-6
CPU time [sec] 12.6 4.8
mp-speed up S(N,p) :=T(N,1)/T(N,p) 3.3 8.7
mp-efficiency B(N,p) = S(N,p)/p 0.83 0.54

Table 1: Multiprocessor efficiency / speed up of grid partitioning

Let us now consider a multigrid component - a (paralle]) relaxation step for instance. On
each local subgrid this relaxation step can be carried out in parallel using the grid points of
the corresponding process, because of the strictly local dependencies of the operator in each
grid point. However, grid points defining an interior (pseudo) boundary need the data from
neighboring subgrids. After each relaxation step the values stored in the overlap areas are
exchanged and updated via message-passing communication mechanisms. The introduction
of overlap areas does not change the numerical algorithm since a strict synchronization
following each relaxation step is ensured. Thus, the well known optimal numerical behaviour
of standard sequential multigrid methods can be obtained also for parallel algorithms using
grid partitioning.
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Table 1 presents results (evaluated on Intel’s iPSC) based on Dirichlet’s problem using
a 129 x 129 global grid, which is decomposed into equally sized squares. Due to an increase
in the communication cost / computation cost ratio when going from 4 to 16 processors
mpefficiency decreases. For a more detailed discussion the reader is refered to [14].

8.2 Multigrid using Schwarz iteration as a smoother. In the following sub-
section, instead of the ”naive” combination of Schwarz’ method with multigrid techniques,
we propose more direct multigrid approaches to the composite mesh systems (4). In this
method a multigrid hierarchy of composite meshes is used: The principle of Schwarz’ Al-
ternating Procedure is applied exclusively within the relaxation process. Similar smoothing
processes are proposed by Linden [6], Hackbusch [4] and Chesshire, Henshaw [2].

We now assume that the composite mesh discretization of our model problem (1), (2)
is given. Similarly, we define a sequence of coarser composite meshes and corresponding
discretizations on all multigrid levels, e.g. the overlapping topology is given on all coarser
grids. We now define the standard multigrid method to be a parallel multigrid algorithm
performing each grid level £ = 1,..., £,.,. sequentially, but performing subgrids within each
level simultaneously. The usual restriction and interpolation are used. They are however ap-
plied blockwise in parallel to all Qﬁ, h = h;y and the following smoothing processes. Clearly,
there are different possibilities concerning the order of the subdomains, the order of (local)
smoothing and the order of updating the pseudo boundaries.

ALGORITHM ZS : Schwarz—Gauss—Seidel smoother

Let . = hy be the current multigrid level and uikﬂ’(’.) an initial approxima-
tion in Q2**! (including the left and right pseudo boundaries 725! and Z5*!

respectively).

]

STEP 1 Apply v > 0 (Gauss—Seidel) relaxation steps to uikﬂ’(i) in Qﬁ"“,

1<2k+1< p,eg. define

S’,:(ulzlk-)-l,(i)) — u§k+1,(i+1) ]

STEP 2 Update all odd (black) pseudo boundaries, e.g. let

u2o® = Hz?b)uikﬂ,(iﬂ) on 72¢ (v2%)

where II2%, denotes the interpolation of the psendo boundaries.

a(b)
STEP 3 Apply v > 0 (Gauss—Seidel) relaxation steps to uik’(’) in Q%F,

1< 2k < p, e.g. define

S;l/(uik,(i)) o= ui"v(""'l) .

STEP 4 Update all even (red) pseudo boundaries, e.g. let

W26 sz:;)-lui"’(‘“) on 73*(x¥) .

The smoothing rate of SAP is (for local analysis) the reduction of high frequency errors
along the pseudo boundaries. If multigrid is applied with the smoothing described above
it is essential that not d but ovl := ¢ has a not t0o small minimum on all grids (cf. [11],
[12]). Therefore it is better to use subdomains € with fixed overlap ovl for each k than
h-discretizations of fixed subdomains €. This method is more similar to grid partitioning.

We call it moving pseudo boundary method.
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Figure 2: Interpolation of (a) fixed and (b) moving pseudo boundaries

3.2.1 Moving pseudo boundary technique. The smoothing properties for standard
applications of the Schwarz—Gauss-Seidel relaxation may become worse on coarser multigrid
levels. This is due to the fact that the amount of overlap ovl decreases on coarser grids.
Additionally, computional work slighly increases for fixed pseudo boundaries: Higher order
interpolation is essential for preserving good approximations to the solution restricted to
the pseudo boundaries. ‘

To overcome these problems we extend the SAP smoothing technique to so—called mov-
ing pseudo boundaries (cf. figure 2): On each multigrid level the overlap area-remains
unchanged in terms of the mesh size (fixed overlap ov! for all hy,£=1,2,...).

3.3 Numerical results. For illustration we present results for the parallel multigrid
method using Schwarz-Gauss—Seidel relaxation (algorithm ZS). First we show the conver-
gence properties of this algorithm. Again the model problem used is equation (1). We apply
standard coarsening (for all grids) and coarse—grid operators using the same composite mesh
discretization as on the fine grids. The transfers are done by full weigthing (restriction)
and bilinear interpolation (prolongation), respectively. The results given below are based
on W-cycling and zebra—stripe (ZS) odering of the subdomains:

e ZS1: Update of the pseudo boundaries after every single Gauss—Seidel step. In particu-
lar, W(z1, v2)—cycling leads to »; SAP-Gauss—Seidel (SAP-GS) pre- and v, SAP-GS
post-smoothing steps, respectively. Only one Gauss—Seidel smoothing step is per-
formed on each local grid.

» Z82: Update of the pseudo boundaries after vy,v5 > 0 Gauss—Seidel steps. In par-
ticular, W(w1,v2)—cycling leads to just one SAP-GS step before (after) coarse grid
correction using vy (v9) Gauss—Seidel steps on each local subgrid.

The exchange (update) of the pseudo boundaries is done by single injection and (on coarser
grids) by cubic interpolation. This turns out to be important: Using linear interpolation
for instance, resuits in much slower multigrid convergence.

In table 2 and 3 we compare the convergence of this algorithms for fixed overlap areas
d on all grid levels. The given results refer to different values for d and to a global mesh
size of 81 x 81 grid points.

For very small values of d (< 6hg) we illustrate the influence of the decreasing overlap
oul on coarser grids as was described above. Comparing version ZS1 with ZS2, version
ZS1 differs significantly for small d. The approach of just one Gauss-Seidel smoothing
step to solve the local subproblems in the SAP iteration leads to slower error reduction
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W(2,1)—cycling W(3,0)—cycling
d=32hg | d=8ho [ d=4hg d=232hy [ d=8hg [ d=4hg
Zs1 0.0533 0.0586 | 0.2753 0.0544 0.0626 | 0.3955
ZS2 0.0523 0.0529 | 0.0681 0.0522 0.0530 | 0.1587

Table 2: Numerical multigrid convergence (2 stripes)

W(2,1)-cycling
d=0.1=28hg [d=0.5=4hg
ZS1 0.0559 0.3081
782 0.0531 0.0524

Table 3: Numerical multigrid convergence (8 stripes)

for high frequency components. Similar results hold for W(w1,0)-cycling (which leads to
less communications; cf. table 4) as shown in table 2 and 3 (the latter for more than two
subdomains). In table 4 results are shown for algorithm ZS2 using the moving pseudo
boundary method. The results given refer to a global grid containing 65 points in X~ and
Y-direction, respectively.

ovl ‘ P

2 stripes | 4 squares
4 0.121 0.153
6 0.034 0.038
8 0.032 0.031

Table 4: Numerical multigrid convergence: Moving pseudo boundaries, W(2,1)-cycling

[ Method | # SEND/RECEIVE [%S/R]
MG2 2x 2T ) x (o1 +w2+ 1) +2F71 ] 100
ZS1 2% (2L~ 1) x (b1 + ) + 2871 ~ 75
ZS2v; >0 [ 2x (2FT-1)x 2 ~ 53
2821 =0 [2x 2 T-T)x1 ~ 30

Table 5: Number of messages per multigrid W-cycle

Communication on distributed memory machines: Typically, certain highly
parallel computers with a large number of processors { 100-1000 or more) do not necessar-
ily provide shared memory for all these processors. Thus, for MIMD machines w.ith local
memory, a concept has turned out to be suitable that is based on message-passing com-
munication. Here start up time for the initialization of communication is needed as well as
transfer time for each item of the message, e.g.

Tmessagc = Lstartup + T'length .

It turns out, that for message lengths obtained in the above problem class f:he f:ritical
term is start up time. Thus, we have to construct parallel algorithms which minimize the
messages to be sent and received, respectively. Table 5 shows the number of messages of the



408 SBOSNY

grid partitioning method MG2 (see section 3.1) and the parallel multigrid using Schwarz—
Gauss-Seidel relaxation (algorithm ZS). We obtain that algorithm ZS1 needs only about
75 % of the communications used by MG2. In contrast to MG2 and ZS1, the total number
of messages exchanged by ZS2 is independent of the number of relaxation steps vy and v,
respectively. Hence, this algorithm needs only 53 % of the communications of MG2 for
vi,v2 > 0 and 30 % for W(x, 0)-cycling.

4. Conclusions.  We analyzed and implemented parallel multigrid methods us-
ing domain decomposition based on the "Schwarz Alternating Procedure”. It turns out
that the smoothing rate of SAP depends on the width of the overlapping zone. For fixed
pseudo boundaries this overlap may be decreased on coarser grids leading to unreasonable
coarse—grid corrections. To overcome this problem we introduced so—called moving pseudo
boundaries. This results in algorithms which contain much less communications without
significant loss of convergence-speed.
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