CHAPTER 5

Preconditioners for One Class of Elliptic Problems in
Not Simply Connected Domains

B. N. Khoromskij*
G. E. Mazurkevich*®

Abstract. The fact that coefficients of elliptic equations can be
discontinuous along the boundaries of the subdomains but vary slowly
in their interiority is the essential assumption in a well-known class
of the substructuring methods. In our study we show that the
convergence properties of the substructuring algorithms do not change
if the subdomains have the regions of highly varying or discontinuous
coefficients which are uniformly isolated from the boundaries of the
subdomains.

Introduction. In our paper we discuss one of the aspects of
the domain decomposition methods for solving a second order elliptic
problem with variable coefficients -~ the dependence of the bounds for
the condition number of the iteration operators on the behavior of the
coefficients,

The essential assumption used by a well-known family of iterative
substructuring methods based on a non-overlapping subdivision of the
initial domain [see e.g.3,4,7,8,10,11,12,13,151 is that the
coefficients «can be discontinuous along the boundaries of  the
subdomains but vary slowly in each subregion. There are however some
problems, e.g. magnetostatic problems in combined formulation [7] or a
problem of evaluation of the spectral dimensions of fractals [2],
where for an efficient solving we have to deal with the subregions in
which this assumption is violated. In such problems for each f(or a
number} of the substructures we can distinguish the closed “interior”
regions with highly varying or discontinuous coefficients which are
isolated from the ‘“exterior" boundaries of the substructures by &
strip where the coefficients are smooth. In the “interior" regions the
coefficients can be equal to =zero or infinity and in that case we have
the problem in a not simply connected domain with the Dirichlet or
homogeneous Neumann conditions on the "interior" boundaries.

) In what follows we show that the Poincaré-Steklov operators
defined on the “exterior” boundaries for such subproblems are
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spectrally equivalent to the Poincaré-Steklov operator for the
Laplacian in the subdomain and the condition number depends only on a
geometrical factor - the ratio of the diameters of “interior" region
and the whole subdomain. So, in the iterative methods for solving a
boundary equation with respect to the trace of an unknown function on
the ‘"exterior" boundaries of the subdomains all the preconditioners
constructed for the piecewise constant coefficient case [see e.g.
1,3,7,8,9,14,15] can be applied. We also present numerical
experiments.

Formulation of the problem. Let @ be a bounded domain with a
Lipschitz boundary aQ, Qc[Rm,m=2,3, decomgpsed_ into n regular
subdomains Q1 with Lipschitz boundaries BQi, Q=i§11§21. We also suppose

that each (or a number) of subdomains can be represented as ﬁfﬁiUDi,
where 5?(9{, and for a distance d between GD? and 6&2I holds
d( an,aQi)z&diain for all i, with &8>0. We denote as TI" the union of
the interior boundaries, I'=(yaQ )\&qQ.

Let VcHI(Q), X<HY*T) or XcHY%(3). We consider the following

boundary problem with respect to the trace u=yweX of the unknown
function weV: find ueX such that

n -1 -1 _
(1) Zm( Si u,'arz)Lz( BQ: )+ot( SE u,a'z)Lz( 59 )-( !ll,a’z)Lz(r )

~-1/2 1/2

(8Q)— H "(3)

- is the symmetric, positive-definite Poincaré-Steklov operator for an
exterior boundary value problem for the Laplacian [7]; Si is  the

holds for all zeV. Here Y is a given function; SE:H

Poincaré-Steklov  operator for a boundary value problem in the
substructure Q for the operator
1
m & 8
AiW = Zj=1§x—jﬁi(x,)§jw’ xeﬂi.
For the coefficients Bi(x) holds

, (x)=z0, xeD?
(2) B(x) = L
! 0<consti<m , xEDi

. _ Loy, _ _ 172 i
If we choose in (1) V={weH (Q).(arw,go)Lz(aQ) 0}, X={ueH " “(8Q):

. . . _ _ _an? .
( u’go)Lz(aQ)_O}’ g, Is the Robin potential, =1, n=1, T rS‘Dl we obtain

a problem in combined formulation [7]. Choosing in (1) V=H;(S'Z),

X=H1/2( '), «=0, n>1 we obtain the homogeneous Dirichlet problem in Q

with highly varying coefficients in the substructuyres.

The properties of the operators Si, Si in the case when in (2)
5_1552—. (the case of slowly varying coefficients in the substructures}
1 1

and methods for solving the problem (1) have been studied in [e.g
1,7,8,9,12,14]. Below, the principal aim of our study is to analyze
the properties of these operators in the dependence of highly varying
coefficients when the condition (2) holds true.
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Analysis of operators. For simplicity we discuss the two-
dimensional case. Analysis of the three-dimensional one is the same
but more cumbersome.

Let us consider the following variational problem in the circlg
§c=( OspsR, O<p=Zm } with the boundary 8@ : for a given function teX

find weV such that
3) a(w,z) = <t,yz> holds for all zeV .

Here VcHl(ﬂc), XcHllz( 80); v :+ ¥V — X is the operator of traces;

4m o 3=(= is the duality paring between X and X*. The bilinear

"Lz(asz)

form a(w,z) is defined by

(4) a(w,z) = [ B(x)VwVzdx,
Q

with the coefficients 2
0 = p=const = w, xeD={0=p<r, Ke=2n}

(5) B(x) = . .

. - 1 , xeD ={r<p=R, Kep=s2u}
in we set

(6) v =H'@), X=H"%(80), texX” : <t,1=0,

then the problem (3)-(6) is equivalent to the Neumann boundary value
problem in Qc.

We denote the Poincaré-Steklov operator for this problem as Sli
when p#l and as S A when p=1. The properties of the operator S, as well

A
-1 »#
as SA X — X are well-known [1,12,14]: the Ilater is symmetric,

positive-definite, bounded in corresponding norms and gives an

equivalent norm in X. The following lemma determines the properties of
the operator Sp:

LEMMA 1. let S A and Sﬁ be the Poincaré-Steklov operators for the

problem (3)-(6) when p=1 and when p#!1 correspondingly. Then for each
ueX the following inequalities hold true
1

-1 -1 -1 .
(N G0 <SA U,u> = <S“ uu> = <SA u,u>  if Osp<l

-1 -1 -1 .
<SA uu> =< <Su u,u> = q(u)(SA u,u>  if Kusw

¥

T~ r/R)%( 1~p)

where g{p)=
1+p+(r/R*(1-p)

is bounded independently of u.

’I‘he proof of this lemma is based on the following property of
the Poincaré-Steklov operator [see e.g. 1,125
._1 B
(8) (Sk uuw> = alw,w), WEVA, u=yweX, k=A/,u

and the explicit representation for the solution w of the Dirichlet
probiem:
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2

n n

Z‘m 2§r/R) (P/r) (d,ncosn.‘p + aninnq))’ xeD
n

- (TR (1= +(14w) =l

( @ _cosng + aninmp), xeD!

w (1-p)r2™/(R"p™) + (1+p)(p/R"
) Z

(r/R)Z™ (1-p)+(1+p)

o ® n . -
w —Zn=o(p/R) (ocncosmp + anmngo), p=1
where o and B are Fourier coefficients of u. Now straightforward
n

evaluations for the bilinear form in (8) give the inequalities (7).
It can also be easily seen that for g(u) holds

1+(r/R)*

(10) Q =gq(w =Q for all g, where Q =
1-(r/R)?

So, lemma is proved m.

REMARK 1. Note that the vamatwnal problems (3) for the two limiting

cases with p=w and p=0 are equivalent to those in the ring

§r={0<rsp5R, O<p=2n} with the Dirichlet and homogeneous Neumann
conditions on the interior boundary T ={p=r, O<p=2m} correspondingly

and with the f ollowmg ch01ce of the spaces V
"{zeH (Q ) : yz=const on T } V =g (Q ).

From meqluah‘ues 1 ('Z} and (10) it f ollows that for the
operators S and S k :X— X k=D,N, for these problems holds
Qs uw = s luw = <SAu w

<SAuu>-<S uu) _Q<S uu>

o <SN u,u> = <S u u> = Q(S u u>, ueX,
where the operator S;)l is umqneiy defined on the traces of functions
from Vn with const=o¢0=f anudo- =
Suppose now that P is a bi-lipschitz mapping of Qc on a Lipschitz
domain Q =D'uD’ such that
L L L 5
cRSdiamQ =cR; cr =diamD =cr;
2 3 5 b 4
¢ (R-r) d(x,y) = cb(R—r) for all xeaDL, yeas‘zL; 0<C1<°°
holds, here d is the distance between ﬁDi and 652]_. Consider the
problem (3)-{5) where (5)  holds for the regions Di and DL

correspondingly. Then the following lemma holds true:
LEMMA 2. Llet S S 8 SD be the Poincaré-Steklov operators for the

problem (3)-(5) in a szschitz domain QL defined above, with p=1, p=l,
p=0,u=w correspondingly. Then the following inequalities hold true:

-1 =1 =1 —-1
03 L uw = < luw = 6E ww,

c<§;u,u> = <§;u,u> = CQ(ST;

. ———1 —
c<S 1u,u> = <Sp u,u> = Cl<SD1u,u>

u,u>,

for all ueHVZ( aQ ) where € and c¢ depend only on the Lipschitz

constants of P and P, 0 is defined in (10), ¢, and c are
independent of p.
The proof of this lemma follows from REMARK 1 and the invariance
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of norms and seminorms of Sobolev spaces under sufficiently smooth
transformations of variables [Sl. o
REMARK 2. Note that if we consider the operators Sk ,Sk on a finite

. h
dimensional subspace thH1 /Z( a) of functions uh=a'w ,
whc—.Vtch,k=A,N,D, then the results of LEMMAs 1 and 2 remain valid m.

From the results of this paragraph it follows that for iterative
solving of the problem (1)-(2) all the preconditioners constructed for
the piecewise constant coefficient case [see e.g.
1,3,4,6,7,8,9,13,15] can be applied without crucial  deterioration of
the convergence properties of the iterative algorithms.

Numerical experiments. Numerical experiments demonstrating
independence of the convergence properties of the iterative algorithms
of the behavior of p in the interiority of Q when the problem 1-(2)
corresponds to the three-dimensional magnetostatic one in combined
formulation have been presented in [7, p.134, Table.5l

Below we present numerical experiments for the two-dimensional
problem (1)-(2) in the case when we have the Dirichlet problem in
initial domain.

The experiments have been done using a preconditioned conjugate
gradient (PCG) method to solve the boundary equation (1) with respect
to the trace of unknown function on the boundaries of the subdomains
with the preconditioners for the piecewise constant coefficient case
proposed in [7,8]. Note that from LEMMA 2 it follows that for the
number, of iterations N of the PCG method holds N = 148, where
S=d( BDi,aﬂi)/diamaﬂia 1-r/R. '

EXAMPLE 1. In the first example £ is the unit square decomposed by
vertical and horizontal lines into 9 identical square subdomains le,

k,=1+3. In local systems of coordinates associated with the centers
of subdomaing, the subdomain le jitself and the region Dzl are

represented as

() 4 =(1x|=R, iy|=R}, Dl=fixlsr, \ylsr}, kl=1+3.
For the coefficients in (2) we put p(x)=0, xeDzl, and so we have
the boundary value problem in (Q\ 3 Dzl) with the homogeneous

ky1=1 k
Neumann boundary conditions on the "interior" boundaries 3 ap?.
k,1=1 kI
Table 1 shows the dependence of the npumber N .of iterations
necessary to reduce the initial residual of the solution by =a factor
10 on the geometrical factor =(1-r/R). The case with &=l
corresponds to the piecewise constant coefficient case.

s 1 273 13 176 112
0 10 11 13 16
Table 1

EXAI.\JPLE. 2. The second example demonstrates the behavior of the number
of iterations N when the number of subdomains Dk increases but the
t

Parameter 3 rt?mains fixed for all subdomains. First, § is decomposed
into 4, then into 16 subdomains le, which sare defined in (11), but

f‘cr the two cases §=2/3. In both the cases the number of iterations N
is equal to 10. )



PRECONDITIONERS FOR ONE CLASS OF ELLIPTIC PROBLEMS 61

Acknowledgement. We are very grateful to our college Dr. Kornilov
E.I. for the formulation of the physical problems which stimulated our
research and helpful discussions.

1LAGOSHKOV V.I.,, Poincaré-Steklov operators and domain decomposition
methods in finite dimensional spaces, In: R.Glovinski et al. eds,
First International Symposium on Domain Decomposition Methods for
Partial Differential Equations, SIAM, Philadelphia, 1988, pp.73-112.

2.BARLOW M.T., BASS R.F. and SHERWOOD J.D., Resistance and spectral
dimensions of Sierpinski carpets, J.Phys. A, Vol.23,1990, L253-1.258.
3.BRAMBLE J.H., PASCIAK J.E.and SCHATZ A.H., The construction of
preconditioners for elliptic problems by substructuring I-1V,
Math.Comput., Vol.47, 1986, pp.103-134; Vol.49,1987, pp.1-16;
Vol.51,1988, pp.415-430; Vol.53, 1989, pp.1-24.

4.DRYJA M. and WIDLUND O.B., Towards a unified theory of domain
decomposition algorithms for elliptic problems, In: T.Chan et al. eds,
Third International Symposium on Domain Decomposition Methods for
Partial Differential Equations, SIAM, Philadelphia, 1990, pp-3-21.

S.GRISVARD P., Elliptic Problems in Non Smooth Domains, Pitman,
Boston, 1985.

6.HSIAO G.C. and WENDLAND W.L., Domain decomposition in boundary
element method, In: Fourth International Symposium on Domain
Decomposition  Methods for Partial Differential Equations held in
Moscow, (to appear)

7.KHOROMSKIJ B.N.,, MAZURKEVICH G.E. and ZHIDKOV E.P., Domain
decomposition method for magnetostatics nonlinear problems in combined
formulation, Sov.J.Numer.Anal.Math.Modeling, Vol.5, No.2, pp.111-136.
8.KHOROMSKIJ B.N., MAZURKEVICH G.E. and ZHIDKOV E.P., Algorithms of
box domain decomposition for solving 3-D elliptic problems, In: Fourth
International Symposium on Domain Decomposition Methods for Partial
Differential Equations held in Moscow, (to appear)

9.KHOROMSKIJ B.N. and WENDLAND W.L., Spectrally equivalent
preconditioners for boundary equations in substructuring technique,
Math.Institute A, Universitst Stuttgart, Tech.Report, 1991 (to appear)
10.KUZNETSOV YU.A., Multi-level domain decomposition methods, Applied
Numerical Mathematics, 6(1989/90), pp.303-314.

1L.LIONS J.L., On the Schwarz alternating method, III. A variant for
nonoverlapping subdomains, University Paris-Dauphine, Techn.Rep. 8913,
1989,

12.LEBEDEV V.1, Composition Methods, USSR Academy of Sciences,
Moscow,1986 (In Russian)
13.NEPOMNYASCHIKH S.V., Domain decomposition method for elliptic

problems with discontinuous coefficients, Siberian Branch of USSR
Academy of Sciences, Computing Center, Techn.Report 891,1990, (In
Russian)}

14.QUARTERONI A. and VALLI A., Theory and  application of
Steklov-Poincaré operators for boundary-value problems, In: R.Spigler
(ed.), Applied and Industrial Mathematics, Netherlands, 1991,
pp.179-203.

IS.SMITH B.F., An optimal domain decomposition preconditioner for the
finite element solution of linear elasticity problems, Courant
Institute, Dep.of Comput.Sci., Technical Report 482, 1989



