CHAPTER 45

Pseudospectral Domain Decomposition Techniques
for the Navier-Stokes Equations

Timothy N. Phillips*

Abstract. Pseudospectral approximations to the solution of fourth-order differential equations are
constructed. These approximations enable boundary conditions of both Dirichlet and Neumann type to be
satisfied by the representation. The equivalence between a variational and a collocation formulation of the
problem is demonstrated. The interface conditions in a collocation scheme for a multi-domain problem are
derived from the variational formulation. The method is applied to the laminar flow of an incompressible
fluid in an L-shaped domain. Numerical resuits describing the main features of the flow are presented.

1. Introduction. In this paper the solution of the Navier-Stokes equations for the
steady, two-dimensional laminar flow of an incompressible fluid through an L-shaped channel
is considered. In this approach we use the generalized Legendre Gauss pseudospectral
collocation method. The method developed here is an extension of the one developed by
Malek and Phillips (1991) for fourth order linear problems in one and two dimensions,

The Navier-Stokes equations may be solved using either primitive variable or stream
function formulations. Here we use the stream function formulation since it is simpler and
preferable to work with a single equation than with a coupled system. The introduction of a
stream function into the governing equations results in a nonlinear fourth order differential
equation. This equation is solved iteratively using a Newton linearization technique. A
disadvantage of the stream function formulation is that the resulting matrix systems are
more badly conditioned than their primitive variable counterparts.

The flow domain is divided into a number of rectangular subdomains. The stream
function within each subdomain is approximated by a pseudospectral representation which
interpolates values of the stream function at interior collocation points and values of the
stream function and its normal derivative on the boundaries and subdomain interfaces. The
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representations are then automatically C! continuous in the flow domain. A collocation
scheme which was derived by Malek and Phillips (1991) for linear fourth order differential
equations is then used to determine the unknowns in the pseudospectral representations at
each Newton step. This scheme results in C3 continuous approximations asymptotically.
The Newton process converges extremely rapidly.

There have been a number of papers dedicated to the solution of the stream function for-
mulation of the Navier-Stokes equations using spectral and pseudospectral approximations.
Maday and Metivet (1986) study Chebyshev spectral and pseudospectral approximations
to the Navier-Stokes equations. They prove convergence of these schemes and derive error
estimates in weighted Sobolev spaces. Bernardi and Maday (1988) give a survey of different
strategies which may be employed for linear fourth order problems. A Chebyshev spectral
element method is described by Karageorghis and Phillips {1989) for the solution of the
Navier-Stokes equations in a channel contraction using a stream function formulation.

2. Governing Equations. In terms of dimensionless variables the two-dimensional
steady incompressible Navier-Stokes equations are

1

1) (v.V)v=~-Vp+ Fe

Viv,

(2) Vwv=0,

where v = (u, v) is the velocity vector, p is the pressure and Re is the Reynolds number. The
Navier-Stokes equations (1)-(2) are to be solved in some domain  with no-slip boundary
conditions v = 0 on rigid walls and with v specified in the entry and exit sections.

The introduction of a stream function, ¥(z, y), defined by

YU = = = ——

oy’ oz’

means that the continuity equation (2) is satisfied identically. The pressure may then be
eliminated from (1) to give

(3) Vi~ Re{%'-ﬁ-%(v%p) - %‘f-‘%(v%/;)] =0.

The nonlinear equation (3) is solved in the L-shaped domain subject to the boundary
conditions shown in Fig. 1. We assume no-slip boundary conditions on the channei walls
and Poiseuille flow at entry (y =8, ~c <z < c)and exit (z =5, -1 < y < 1).

Tet us consider for the moment the solution of the Navier-Stokes equations (1)-(2)
subject to homogeneous velocity boundary conditions i.e. v = 0 on Q. We define the
Sobolev spaces

BYQ) = {w:we L*}Q), Dwe L}Q), D*w € L*(Q)},
H(Q) = {weHY(Q): w= %’3 = 0 on 892},

where L%(Q) is the space of square integrable functions on §2, D represents differentiation
with respect to ¢ or y and 8/8n represents differentiation in a direction normal to 9Q. Let
us introduce the bilinear form b(.,.) on H%(R) x H(Q) defined by

® W, ¢) = (V9,V?).
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Girault and Raviart (1979) show that the solution of (3) satisfies the variational problem:
Find 4 € H(Q) such that

8¢8¢» 6¢3¢
®) %)~ Re [ [ Vi(GEeE - St ooz dy =0,

for all ¢ € HZ(R).

3. Newton Linearization. The governing equation (3) is a nonlinear partial differen-
tial equation for the stream function and is solved iteratively using a Newton-type method
to linearize it (see Phillips (1984)). Let us rewrite (3) as

(6) L($)=0,

where L is a nonlinear operator. The iteration begins by finding the solution, (), of the
Stokes problem with no-slip boundary conditions on the rigid walls and Poiseuille flow in
the entry and exit sections (see Fig. 1). Suppose that ¢* is some subsequent approximation
to the solution of (3) satisfying the boundary conditions. We replace L by its linearization
about ¢* and then solve the linearized problem

(M L'(y*).¢ = ~L(¥*),

for ¢ subject to homogeneous Dirichlet and Neumann boundary conditions where /(%) is
the Frechet derivative of L at 1 defined by

(8) L’(¢)‘¢ = V4¢ — Re T(¢’ ¢)s
where
6¢ i) 6¢ a 34) a 6¢ 9
T(h,6)= 5 5o(V*0) = 50 5 (V*D) + Go 5 (V) - o 5n(T7)

The new a.ppIOlea.tlon to the solution is thus ¥* +¢. This completes a single Newton step
and is repeated until convergence is reached. The variational form of (7) is thus: Given
¢* € H2(Q) find ¢ € HZQ) such that

247 9¢0x 9¢9x 2 azl’ ox 0v*ox
b(¢’X)+Re/,/V ¥l Byﬁm 6:c6y]d zdy + Re //V¢ By dz Oz By i

®) = — [[ Les")x daay,

for all x € HZ(Q).

4. Pseudospectral Approximations. Malek and Phillips (1991) derive an optimal
set of collocation points for the model fourth order problem in one and two dimensions.
They construct the generalized Lagrange interpolating polynomial which interpolates the
function at the interior nodes and the function and its derivative at the boundary nodes.
The use of this polynomial facilitates the imposition of both Dirichlet and Neumann bound-
ary conditions for fourth order differential equations. If the inner product in the discrete
variational formulation of the fourth order model problem is defined by the generalized
Gaussian quadrature rule associated with this interpolating polynomial, namely

N-1
W) [ adie = T wif(6) + m(f(-1)+ SO+ BD) - D),

=2
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then an equivalent collocation scheme may be derived. Additionally, the corresponding
interface conditions may be determined in the case of domain decomposition. The above
quadrature rule is exact for all polynomials of degree 2N —1 or less when §;, 2 < i< N -1,
are the N — 2 zeros of P{j(z), where Pn(z) is the Legendre polynomial of degree N. The
boundary weights in the above quadrature rule are given by

_ 8(2N2+2N-3) _ 8
=N DNV+ DV +2) "N -DNE+ DV +2)°

and the interior weights by

w0 = 32N(N +1) 1
7TV =)V +2)(V +3)2 (1 - E)[Pr-1(§)]

for2<j<N-1

The L-shaped domain is divided into three rectangular subdomains Q,, £, and {3
(see Fig. 1). In each subdomain the collocation points ({f‘,n}‘) and associated weights
(w¥, 2¥) are found by transforming the subdomain onto the unit square. Let ¢}, denote the
approximation to % in subdomain k at the point (£¥, 17;‘) The approximations to the normal
derivatives of 1 at the boundaries and interfaces are defined similarly. Then we expand ¥

in each subdomain using pseudospectral approximations, for example in subdomain I we
have

N N
P,y =33 Bkl E==) - 1]
i=1 =1
1 D I N VR L.
(11) +§( 5 ) ($y)in i(;) N[2('_T_—a)—1],

where hi(z), 1 < i < N and hi(z), i = 1, N are the generalized Lagrange interpolation
polynomials defined by

hi(§;) = b5, hi(£1) =0, 1< 4,j< N,

7;1(61') =40, i= lan 1 _<.j < N? 7”-:.({]) =§i,j7 2,j= 17N7

with § = -1 and £y = 1. The approximations in subdomains II and III are defined
similarly. If we set

¢3N= 3[1 (Zb;)iN:("l’g)zla 1S’SN,

V=43, (Bni=@)u, 1<I<N,

we can easily verify that these approximations are C? continuous in 2. The representations
automatically satisfy all the boundary conditions.
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5. Derivation of the Collocation Scheme. Let ;5 and 723 denote the interfaces
between subregions I and II, and II and ITI, respectively. Define the subspace U of H2(£}) x
H?*(Q2) x H%(Q3) by

3
U= {‘I’ = (¢1’ ¢2, ¢3) : 'bl = » aaf] = —'1%' on y12, ¢2 ¢3’ aa'i al‘i on 723}9

and the subspace Up of U by

Uo={¥ =L, 4% ¢ € U: p™ = “' — Oon 8Q for m = 1,2,3}.

We can show, using Green’s theorem, that the variational problem: Given ¥ € U, find
® € Up such that

(12) b(®,0) + ReF(¥,®,0) = E / / L(¥*)0* dzdy,
k=1
for all © € Up, where the bilinear form &(.,.) and the functional F(¥, ®,0) are defined by
5(8,0) = E / / (V24F)(V?6%) dzdy,
k=1
and

¢ 06*  dgk do* dpF 8o ay* dg*
2.0k 2 4K -
F(2,8,0) = Reg_:l// Vg = 23yt V' 5y 50 — a5y 199

is equivalent to the interface problem: Given ¥ € U, find % € Up such that

L'(*)g* = —L(¥*) € @, k=1,2,3,
k
=9 = 0on 00,000, k=1,23,

32451 _ 62¢2 33451 _ 33¢2
Oyt~ Oy?’ 9yd ~ Oy3
02¢2 62¢3 63¢2 ¢3
5c% -~ 0z 0z 0n8 L=

Define the finite dimensional spaces W;, 1 = 1,2,3, by

on 12,

(13)

W; = Pn4a(S) 0 H3(S),

where Py ;1(9:) is the space of algebraic polynomials of degree at most N + 1 in each
"coordinate direction in ;. We also define the finite dimensional spaces Xy41 and Yy
associated with U and Up, respectively, by

Xnp={2=(¢",6%8") e Wi x W2 x W3:2 € U},
and

Yy = {® = (¢",¢%°) e Wi x Wo x Wa : & € Up}.
The dimension of the space Y41 is (3N — 2)(IV - 2).
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We define a discrete inner product on Xy 43 by

(®,0)N41 = Z(¢ 0 )r 410

where (¢¥,8%)k ., is obtained by applying the quadrature rule (10) to the function ¢*6* in
each coordinate direction, for k = 1,2,3. The discrete bilinear form by 41(.,.) is defined on
XN+ X XNy by

3
b41(2,0) = Y (VigF, 090k 1.
=1

Further the discrete functional G on Xy4+1 X Xny41 X Xy is defined by

3
GN41(¥,8,0) = S (T(F, ¢%), 0% Yhrs + Drsa(45.69),

k=1
with

Dha(@, ) = — 3 (LB B8y
N+1 ’ &~ { dy? ay oy® 15 L)

N-1

8242 96° P2 B
2 2 g2y _ 2 2 22
DN+1(¢ 70 ) - g w‘&[ ayg ay aya 0 ](6'5 1)+ ]Z; [332 827 3 J ]( 77)_1)7
3 43 & 5 %% 06° a3¢ "

Dy ya(9 %) = — Z ZJ[ 322 9z 93]( & 7;)-

i=2

The discrete variational problem corresponding to (12) is then: Given ¥ € Xy, find
® € Yn41 such that

a .
(14) bN-H(Qv Q) + GN+1(‘I’7 ®, 9) = - Z(L(¢k)’ ek)zl'g\f«l-l’
k=1
for all © € YN+1.
TuworEM 1. The discrete variational problem (14) is equivalent to the following col-
location problem: Given ¥ € Xyy;, find ® € Yyyy such that

(15)  L'(gF)¢F = —L(¥®)at(eF,nh), 2<4,5< N-— 1, k=1,2,3,
o3
(18) 5;(952 -4 = —(art + 2407 +E}v%1— +:z'% )at(f,,-—l) 2<i<N-1,
2
(7 5‘9;2-@2 —4') = ~(prl+ AP at(g],-1),2<i< N -1,
biss
(18) 5;5(453 6% = —(wirP+wdld+ wN%—- +7 wl o ) at{c,7?), 2<j < N -1,

(19) (453 ¢ = (whr+ofr®)at(e, ), 2<i<N -1,
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where 1% = L'(y*)¢* + L(*) is the residual in Q.
Proof. See Phillips and Malek (1991) for details of the proof. O
REMARK 1. Note that in view of the ezpressions for the weights given in (18) and (14),

wy = wy = 0N, Ty =-Bn=0(N"1), asN — oo,

and therefore from (31)-(84) we can write

I

(20) g‘;wz -9') = O(N ) at(g,-1),2<i<N -1,

f

a2
(21) ;5,-?/—2(11)2 -9

(22) 3%(103 —¥’) = OWN~")at(enf), 2<i<N -1,

2
(23) 5o2(#° )

O(N~%)at(g,-1),2<i< N -1,

O(N—2) at(c1’7_72'): 2 5.7 .<.. N - 17

as N — co. Thus we have second and third order continuity at the interfaces asymptotically,
as N — co. The following algorithm is used in our computations.
ALGORITHM 1.

Step 0 Set % to be the initial approximation to the solution of (6) where %(© satisfies
the boundary conditions of the problem. The initial approximation is chosen to be
the solution to the Stokes problem or the solution to the Navier-Stokes equations
for a lower value of the Reynolds number. Set k = 1.

Step 1 Approximate ¢ in (7) using pseudospectral representations and solve (7) for 9.

Step 2 Find the new approximation ¢(*) by simply adding together the corresponding
coefficients in the pseudospectral representations of ¢ and ¥(*-1),

Step 3 Find the maximum absolute difference, | 1(¥) — (*~1) |, between two successive
approximations to 1 at all the collocation points. ¥ max | %{*) — 3(*~1) |< ¢ then
stop, otherwise set k « k + 1 and go to Step 1.

6. Numerical Results. The collocation equations (15)-(19) yield a system of (3N —
2)(N — 2) equations for the (3N — 2)(N — 2) unknowns. The collocation equations give
rise to a linear algebraic system Ax = b. The vector x contains the nodal values of ¢
and the normal derivative of ¢ at the interface nodes. This system is solved using a Crout
factorization subroutine from the NAG Library. A more efficient direct solution technique
which takes account of the inherent matrix structure is the almost block diagonal solver of
Brankin and Gladwell (1990) which has been used in spectral calculations by Karageorghis
and Phillips (1990,1991). However, this subroutine has not yet been incorporated into the
Present algorithm.

For a tolerance € = 10~1? only a few Newton steps are required for convergence. Our
numerical calculations show that for Reynolds numbers Re = 10 and Re = 50, the Newtfm
scheme converges after only six and eight iterations, respectively. In these cases the initial
guess is chosen to be the solution to the corresponding Stokes problem. For larger Reynolds
numbers the numerical solution is obtained by means of a continuation process in the
Reynolds number. This means, for example, that the solution of the problem for Re = 50 is
used as an initial guess in order to determine the solution when Re = 75. Table 1 shows the
maximum absolute difference between successive iterates of 9 at the collocation peints for
each Newton iteration until convergence is reached when Re = 50 for N = 16 and N = 18.
The usual convergence history associated with Newton-type methods is clearly evident.
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Dependence of || #*) — $*=1) ||os on the number of iterations (k) and discretization parameter (N).

N=16 N=18
1.115 +1 | 1.308 41
4.672 +0 | 5.142 40
8.439 -1 1.116 +0
3.521 -1 4.694 -1
2.342 -2 2.062 -2
6.333 -5 | 9.884 -5
1.023 -8 1.474 -9
4.081 -13 | 2.014 -11

00 =3 O U W N =

(=c 1) Pp=1 =0 (b,1)

b e amn - —— o c— —— —

3____0

(—C, a) P = —%(3 - %:— (caa)

Figure 1. The flow domain and boundary conditions

Figure 2. Contours of ¥(z,y) for Re =0 and N = 14
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Figure 3. Contours of ¥(z,y) for Re =10 and N =18

Figure 4. Contours of ¥(z,y) for Re =50 and N =18
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The contours of the stream function inside the L-shaped domain are shown in Figs.
2-4 for various values of the Reynolds number Re and discretization parameter N. The
stream function contours are plotted using the option in the UNIRAS graphical library
which bilinearly interpolates data given on a non-uniform grid. We are unable to use the
piecewise cubic option in this package since this requires data given on a uniform grid. In all
of the calculations presented we have chosen @ = ~5, b = 7 and ¢ = 1. The values of a and
b are chosen so that we do indeed obtain fully developed fiow in the entry and exit sections,
respectively. The numerical results indicate that the solution converges as the degree of
the approximation, IV, is increased in each subdomain. In Fig. 2 we give the contour plot
of the stream function for the Stokes problem. The contour plots of the stream function
for the Navier-Stokes problem, given in Figs. 3 and 4, show the development of vortices in
the salient corner and downstream of the reentrant corner. The salient corner vortex grows
steadily as the Reynolds number is increased. The vortex downstream of the reentrant
corner grows and extends further downstream as the Reynolds number is increased. For a
fixed value of the Reynolds number the entry and exit lengths are extended to ensure that
a fully developed velocity profile is obtained. A converged solution to the discrete problem
is obtained with mesh refinement i.e. as N is increased.
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