CHAPTER 43

Solution of Differential-Algebraic Equations for Renal
Acid-Base Balance

Raymond Mejia*

Abstract. Domain decomposition with parameter continuation is used to solve a system of
differential-algebraic equations that includes convection-reaction-diffusion equations that describe acid-
base transport in the mammalian kidney. A sparse decomposition with fourth-order accurate space
discretization is described, and a sample problem that analyzes parameter sensitivity is solved. Per-
formance parameters for a solution algorithm are given.

1. Introduction. The process of urine formation by mammals has been studied
by renal physiologists (see [11] and [3] for references to the physiological literature)
and mathematical modelers for some time. The differential equations that describe
the concentration of solutes by the kidney for excretion in the urine have been solved
using both domain decomposition [8] and parameter continuation [9]. Previously,
several models, for example [12], [16] and [4], had used the structure of the kidney
to advantage and had exploited the connectivity of the renal tubules to reduce the
size of the system of discretized equations that describe a steady state. Recently,
continuation of solutions as a function of physiological parameters has been used both
to study the transition of solutions from one steady state to another, and to reduce
* the labor required to obtain a solution for a desired set of transport parameters [9],
[6]. In addition, charged species have been considered in [13] and [14] to study the
concentrating mechanism, and in [7] to investigate acid-base transport in a perfused
tubule [2].

We describe a mixed system of differential and algebraic equations for acid-base
balance in the mammalian kidney that includes both reactive and non-reactive species,
and we show a method of solution. Fig. 1 shows schematically a model with two
nephron populations. The first consists of long nephrons that originate near the
cortico-medullary border and extend into the inner medulla to the papilla. The second
population consists of short nephrons that originate higher in the cortical labyrinth
and extend to the junction of the inner and outer medulla. In addition to axial flow
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Fig. 1. Schematic diagram showing two nephron populations of the mammalian
kidney. Boundary data are prescribed at ®; matching boundary conditions at x*;
the closed end of the interstitium (INT) at the papilla is marked by a x. PCT =
proximal convoluted tubule; PST = proximal straight tubule; DTL = descending
limb of Henle’s loop; ATL = ascending thin limb; TAL = thick ascending limb;
DCT = distal convoluted tubule; TCT = initial collecting tubule; CCD = cortical
collecting duct; OMCD = outer medullary collecting duct; IMCD; and IMCD; are
initial and terminal segments of the inner medullary collecting duct, respectively.
Nephron segments in the cortical labyrinth that are not modeled are shown as — -
lines.

in the tubular segments, transmembrane flux between structures takes place via an
interstitium that is represented in Fig. 1 as a tube closed at the papilla and open at
the cortico-medullary border. Differential equations describe conservation of solute
species and water as well as hydrostatic pressure along the nephrons and intersitium.
Algebraic equations describe equilibrium reactions and electrical potential.

It is desirable to solve the differential and algebraic equations in their semi-explicit
form [1] for several reasons. First of all, we wish to retain the physiological significance
of the variables and parameters in order to facilitate the interpretation of solutions.
Secondly, it is advantageous to consider mass balance of certain chemical constituents
(for example, total acid and total phosphate) rather than individual chemical species
such as HPO?™ and H,PO;. A third consideration is the treatment of stiffness
by separating fast and slow chemical reactions. An important consideration in the
formulation of the model for solution is the need to exploit the connectivity of the
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renal structures to reduce the computational labor and make the problem tractable.

2. Model. Equations that describe solute and fluid conservation and equations
of motion in each segment of the kidney are

8/(AC) + 8,F = —J + 4S,
(2.1) B,A+8,F, = —J,,
a’uP = _RvFv)

where by the Nernst-Planck equation mass flow
F = F,C — A(D'3,C + u'Ca,%);

z is distance along the cortico-papillary axis; ¢ is time; A is the cross-sectional area
of the segment; C is a vector of concentrations; F, is volume flow; D is a vector of
diffusion coefficients; ¢ is the electrical potential; J is solute flux (positive defined -
to be out of the lumen), and S is the production or consumption of species due to
chemical reaction. The k% element of the vector u of species mobilities is related to
the diffusivity by u; = DyzF/RT, where z is the valence of the k%" species; F
is Faraday’s constant; R is the gas constant, and T is the absolute temperature. J,,
is volume flux out of the lumen. P is hydrostatic pressure, and R, is resistance to flow.

Algebraic equations that determine buffer balance and electroneutrality are

- pH = pKB -+ log(CB—/CHB),
(2.2) |
<z,C>=—-<zJ—AS >=0,

where pH = — logCy+; pKp = — logKp; the dissociation constant Kg is the proton
concentration at half neutralization; subscripts B~ and HB designate the base and
protonated forms of buffer pair B, respectively. z is the vector of valences for all
species.

Transmural water flux is given by

(2.3) Ju = —-2?erij Z O'kACk,
k

where p is the radius of the tubule; P; is the water permeability; V,, is the partial
molar volume of water; o is the reflection coeficient of the k™ species; and ACy, =
Cy — Cyt, where Cy, and C,;, are the concentration of the £t species in the lumen and
interstitium, respectively.

Transmural solute flux is given by

I = 2ap P ACL + (1 - ak)_C’iJ" +J; ifz=0,
(2.4)
Cy — Cupe™™
1—e2t

Ji = 2mpPrzrg [ } +(1—ox)Crdu+J; iz #0,
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where P is the solute permeability of the k% species; C} = (C} + C,)/2, and g =
FA$/RT, where Ay = b — 1), with ¢ and 1, the electrical potential in the lumen
and interstitium, respectively. Active transport of the k™ species is given by

Vm k Ck

P = — ifk +
Jk Kmk + Ck ! # H ’
(2.5)
Vir Ko .
Bow + [HH] if HT,

where V. is the maximum rate of active transport, and K, is the Michaelis constant.
Chemical sources for carbonic acid and carbon dioxide are given by

(2.6) SH,005 = k1C02 — k_1H,C O3 = ~Sco,,

where k; is the hydration rate constant of CO,, and k_; is the dehydration rate
constant of H,COs.
Water and mass conservation require that

Tofe) = = X Jue),
@.7)
J*k(x) == Z Jik(m)a

where subscript * represents the medullary interstitium, and summation is over all
tube segments i that extend to medullary depth z.

The interstitum is treated as a tube open at the border of the cortical labyrinth
and the medullary rays and closed at the papilla. Thus equations (2.1) and (2.2) hold,
and boundary conditions for ¢ > 0 are

A (L)B;C(L,t) = Cu(L, 1) Juo(L,t) — J(L, £) + AS.(L, 1),
(28) ﬂv(L, t) = F*(Ly t) =0,
P,(0,t) = P,
where 7, is the depth of the medulla. Boundary conditions for each nephron population
are given by

(2.9) Ci(0,1) =C8, F.(0,t)=F,

(2.10) Pi(L,t) = B,

where subscripts 1 and I refer to the first and last tube segme{zt of each nephron
population, respectively, and P, is the bladder pressure. Intermediate baunda?y data
are obtained by matching the value entering a tube segment to that leaving the

previous segment as shown in Fig. 1. . .
Initial conditions at each axial position z and time ¢ = 0 in the lumen and

interstitium are given by
(211) C(z,0) = C°, F,(2,0)=F., P(,0)=F°.
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Table 1
Tubule Parameters
Segment | Length (mm) | Radius (um) | Py (pm/s)
PST2 1.0 10 3000
PST3 0.7 10 3000
DTLy; 1.5 9 2430
DTLy 6.0 8 2430-100
Buffer pK
HCO3/CO, 6.08
H,CO3/HCO3 3.57
NH{ /NH; 9.03
H,PO; /HPO; 6.80
Reaction Rate (s71)
carbonic anhydrase k_y ky
present 4.9x 10* | 1.459 x 10?
absent 49x 10" | 1.459 x 1071

3. Solution Algorithm. Given a set of initial values (2.11) and boundary values
(2.9)—(2.10) proceed to solve equations (2.1) and (2.2) with transmural fluxes (2.3)-
(2.5) and (2.7) and sources (2.6) as follows:

A. Use the continuation program CONKUB [5] to obtain a steady-state solution
as a function of a model parameter. CONKUB will call a subroutine supplied
by the user and named FCTN.

B. FCTN uses the interstitial, boundary and initial data to evaluate equations
(2.1) for each nephron segment as follows:

[ - JU R

6.

. Solve equations (2.2) at the current segment and axial position, j.

. Use Hermite interpolation and solve (2.2) to obtain C(z;41/2,t).

. Use Simpson’s rule to solve (2.1) at 7 + 1.

. Tterate steps 1-3 to convergence.

. Increment j and repeat steps 14 until the current tube segment is com-

pleted.
Proceed to the next segment and repeat steps 1-5 until all nephron seg-
ments are completed.

C. Solve equations (2.1) and (2.2) for the interstitial unknowns and satisfy
boundary condition (2.10).
D. For solution of the time-dependent problem, use a centered trapezoidal ap-
proximation for the time derivatives, and iterate steps B-C to convergence.
Some comments about the solution algorithm are in order. We use CONKUB for
several reasons. First of all, it provides an interactive means of solving the discretized
differential equations with continuation on one or more parameters of the model.
Secondly, continuation is performed using a subsystem of equations (2.1) and (2.2),
namely, the interstitial equations in this model. Thus, we reduce the computer time
required to obtain a steady-state solution for a target set of model parameters. A
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Table 2
Transport Coefficients
B P, Virk Ko
Species emfs x10° | pmol/mm/min | mM
PST DTL PST  DITL PST
'HCO; [ 0.1 | 4,9-15 0 0
NH} 4.5 | 505-0 0 0
NH; 1600 | 2000 0 0
H,PO; | 0.1 42.5 0 0
HPOY | 0.1 | 425 0,6 0 (1x10®
H* 100 100 -42.-10 0 1 x10-%
H,CO3 | 100 10 0 0
Na* 2.6 | 26,29-75 | 108,46 0 50
K+ 14 85 -20,~2 0 50
cl- 7.3 | 11,2541 | 54,23 0 50
Urea 1.5 | 3,17-48 0 0
CO, 10* 104 0 0

similar solution approach that uses continuation techniques has been suggested in
[10] for a class of algebraically incomplete systems. In addition, FCTN is used to
solve both the steady-state and time dependent problems by placing a coefficient,
which is set to either 0 or 1, before the approximation to the time derivative.

Simpson’s rule, as opposed to an adaptive, variable-step method, is used to ap-
proximate the space derivatives. This provides an O(Az*) rate of convergence and
permits one to use a priori information about the transmembrane flux to dmtribt}te
the mesh nodes. We thus obtain high-order convergence with a variable selected grid,
and avoid the need to recompute the interstitial variables as the mesh size i§ ?hanged
[15]. This makes it is feasible to solve the tube equations as a sequence of initial value
problems and the others as a boundary value problem.

Equations (2.2) are solved using a quasi-Newton method (ROOTS). Once the
inverse of a Jacobian matrix is available, ROOTS continues to use it as 1o'ng as the
sup norm of the residual is reduced by a specified amount. I this criterion is not
met, a rank-1 update is performed. If the criterion is still not satisfied, a secant
approximation [9] may be performed, or the Jacobian is computed.

4. Example. Consider a model of a single long nephron p@puiatm'n with pa-
rameters derived from in vitro rat data. Tubule parameters are sho?m in Table 1,
and transport coefficients are shown in Table 2. All reflection coefficients are taken
equal to one except in DTL, where on, = 0.83 and ox = 0.81. Where two valuez
separated by commas appear in a table, they apply ‘to the first B:mi second segment ;:
that tubule, respectively. Where a range of values is shown, a linear profile from the
proximal to the distal terminus of the segment is used for thfe parameter. Boundary
and initial data are shown in Table 3 for the proximal straight tubule and for the
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Table 3
Boundary and Initial Data

Concentration (mM)

Species PST2 | Interstitium
Cortex | Papilla
NaC'l 136.6 113.0 541.0
NaHCOs; 8.0 25.0 25.0
NH,CI 0.4 0.2 10.0
Ky,HPO, 2.5 2.5 2.5
Urea 9.0 5.0 3000
CO, 1.2 1.2 1.2
mQOsm 304.6 | 289.1 | 1470.9
pH 6.9 7.4 7.4
F? (nl/min) | 20.0 - - 0.0
Y (mV) 0.0 0.0 -5.0
P (atm) 00 00 0.0

intersititium.

The object of the example is to study the sensitivity of the model to the phosphate
permeability of DTLj; for a fixed interstitial profile. The steady-state concentration
of total phosphate is shown in Fig. 2 for two values of the permeability. At a per-
meability of 42.5 X 10™° ¢m/s and higher, the phosphate concentration in the lumen
essentially equilibrates with the interstitium, while for a permeability of 42 x 10~°
c¢cm/s the phosphate concentration increases rapidly in DTL;; to 10 mM, which
would precipitate in the lumen.

Table 4 shows performance parameters for the model. The convergence criteria
€; and e; were chosen to reduce the residual to machine precision on a Convex 240
in single precision (64 bit word). The program, written in FORTRAN and optimized
at level O1 (including vectorization), has an execution time of 0.015 seconds per
discretization interval, for a total execution time of 6.3 seconds. Subscripts 1 and 2
in the table represent parameters associated with the solution of equations (2.1) and
(2.2), respectively. For example, ¢ is the criterion used in step B.3 of the algorithm,
€2 is used in steps B.1 and B.2. T is the number of iterations required for convergence.
h is a factor used to compute difference quotients to obtain the elements of a Jacobian
matrix. For example, given matrix G and variable 4

d@ Gy +hxv+h*)—G(y)
dy — hxvy+hn ’

where ROOTS uses n = 4.

5. Conclusions. We have shown the formulation and method of solution of dif-
ferential and algebraic equations that describe a convection-reaction-diffusion system
for renal acid-base balance. The algorithm solves a series of initial value problems
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Fig. 2. Concentration of total phosphate versus medullary depth for two values of the
phosphate permeability of DTL;;;. Solid line shows the solution for a permeability
of 42.5 x 10™® c¢m/s; e shows the solution for 42 x 10~° em/s, and ~ — shows the
concentration in the intersitium.

Table 4
Performance Parameters
& hi | min Az | minZ; | min 7,
107® | 107 10°° 2 0
£ he | max Az | max Z; | max I
1072 | 105 102 6 6

and a boundary value problem, both with nonlinear algebraic constraints. As the
number of nephron populations considered is increased, the algorithm can be readily
parallelized.

The sample problem shows the sensitivity of the model to a parameter that re-
quires measurement in a perfused tubule experiment [2]. The model of the entire
kidney will make it possible to formulate and test various hypotheses about urine for-
mation, suggest laboratory experiments to obtain the necessary parameters, and help
integrate experimental measurements into a theory of systemic acid-base balance.
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