CHAPTER 33

Solution of the Stokes Problem on Distributed-Memory
Multiprocessors

Lois Mansfield*

Abstract

A combination of damped Jacobi preconditioning and coarse grid deflation is proposed to
precondition the conjugate gradient solution of the Stokes problem on distributed-memory mul-
tiprocessors. Experimental results are given for the driven cavity problem on the iPSC/2 and
iPSC/860 with both 4 and 16 processors.

1 Introduction

We consider the finite element solution of the Stokes problem

—Au+vyp = f inQ, M

vu=0 inQ, )

on distributed-memory multiprocessors. Here (2 is a bounded domain in R?, u = (uy,u)” is the
velocity, and p is the pressure. In addition, one has boundary conditions for u. The simplest is

u=g ondQ, 3)

but at outflow it is often better to specify boundary conditions which can be expressed as natural
boundary conditions associated with the variational formulation used in the finite element approxi-
mation.

Besides being important in its own right, the solution of the Stokes problem is important in the
solution of the time dependent Navier-Stokes equations when time splitting is used to separate the
incompressibility condition divu = 0 from the nonlinearity of the convection term (u Y.

To discretize by finite elements, one introduces finite dimensional spaces V* and P%. These
spaces should satisfy the compatibility condition

sup Jodivvpdz ’
veva [IVllallpllze =

O]

for all peP".
The Stokes problem has the algebraic form
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K -B u
(5 ) (5)=(3) ®
If the first system in (5) is solved for u and substituted into the second system, one obtains

Cp=B"K™'Bp=-BTK"'f. (6)
The matrix C is unattractive to set up regardless of what type of computing machine is being used,
so it is natural to use an iterative method like conjugate gradient which only requires that one be

able to compute Cq for any vector g. To do an evaluation of C times ¢, it is necessary to solve a
system

Kz =b. )

where K is a block Poisson matrix. On a conventional machine, one would probably factor K so
that only a forward and backward solve is required to solve (7).

On a distributed-memory multiprocessor computer, triangular solves are very inefficient. Instead,
the region §2 can be partitioned into as many subregions as processors and ordered as

(e 7)(2)=(%) ®

where G contains all rows and columns associated with internal nodes on any processor and F
contains all rows and columns associated with the separator nodes. One way to solve (8) is to solve
the Schur complement system

F:cl = g1, (9)
where F =F — VTG~V and g1 = by — VT G~1by, and then determine zq from

G:co = bo - Vw1. (10)

One can solve (10) by direct methods and (9) by conjugate gradient.

In [5] we proposed a combination of damped Jacobi preconditioning and coarse grid deflation
to improve the convergence of conjugate gradient iteration on distributed-memory multiprocesor
computers. We showed that damped Jacobi preconditioning has much of the same effect that
smoothing has in multigrid iteration in that it reduces the large eigenvalues of the matrix to nearly
1. We showed that coarse grid deflation has the effect of raising the lower bound on the eigenvalues
of the system.

We propose as one way to solve (5), to use conjugate gradient iteration to solve (6). To solve the
systems (7), we propose ordering (7) as (8) and solving (10) by direct methods and (9) by conjugate
gradient using a combination of damped Jacobi preconditioning and coarse grid deflation. For C
the diagonal is not readily available so damped Jacobi preconditioning can’t be used. However, it
is shown in [2] that the compatibility condition (4) implies that C is spectrally equivalent to the
Inass matrix M for the basis elements of P». This suggests that a good preconditioner for € is a
diagonal matrix which is spectrally equivalent to M such as the lumped mass matrix L obtained
by summing the elements in each row of M. We have found that in some cases the techniques of
[5] are still useful here, where we replace damped Jacobi preconditioning by damped Richardson
preconditioning applied to L~1C.

One might hope to save work if the conjugate gradient solution of (9} isn’t done to convergence.
i we don’t want to iterate the conjugate gradient solution of (9), and of (6), to convergence, we
could treat the above procedure as a preconditioner for some iterative scheme applied to (5). The
scheme which perhaps is simplest and easiest to analyze is

- -1

20)-(2)+ (5 )5 )0 o

(Pi+1)_(Pi)+(—BT T o -5 I a

introduced in [2], where K represents several steps of an iterative method applied to K and 7 =
BTR-1p - ¢, where ¢ represents several steps of an iterative method applied to C.
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In Section 3, we present experimental results when our combination of coarse grid deflation and
either damped Jacobi or damped Richardson iteration is used to solve (9) and (6), or are used to
obtain a preconditioner for (11). Qur experiments are carried out on the iPSC/2 at the University
of Virginia and the iPSC/860 at Oak Ridge National Laboratories with either 4 or 16 processors.
The problem we solve is the driven cavity problem using both a uniform grid and an irregular grid
with points concentrated at the corners. In Section 2, we give a brief description of damped Jacobi
preconditioning and coarse grid deflation.

2 Damped Jacobi preconditioning and coarse grid deflation

As a preconditioner for conjugate gradient iteration applied to the system Au = f, damped or under-
relaxed Jacobi preconditioning results from applying one or more steps of damped or underrelaxed
Jacobi iteration to A7 = r with initial approximation #(©) = 0. Damped Jacobi iteration may be
described as

#mH) = (1 — aD T A 4 oDy

where D is the diagonal of A. Ordinary Jacobi iteration is obtained by setting « = 1. If M~ is
chosen to represent m steps of damped Jacobi iteration

M7l=(I+I-aD'A+(I—aD 4P+ -+ (I —aD t4)" YHaD™ .

Similarly to Theorem 1 of [1], it can be shown that for m odd, M is always positive definite since D
is positive definite, and for m even, M is positive definite if and only if 2D — oA is positive definite.
Note that the requirement for damped Jacobi iteration to be convergent (see [9], Theorem 3.3) is
that 2D — a4 and A be positive definite. Of course, 2D — oA can be made to be positive definite
by appropriate choice of .

The choice m = 1 essentially amounts to diagonal preconditioning. As is shown in [1] the benefits
of taking more steps of an m—step preconditioner decreases as m increases. We have used m = 2
and will limit discussion to this case. For m = 2

M™'A=o(2l - aD 'A)D'A.
The eigenvalues of M~14 are given by

Yi=al2—ad)h, i=1,..,n,
where A;, i = 1, ..., n, are the eigenvalues of D~1A4.

¥ =a(2—ad) (12)

is a parabolic curve in A. If o is taken to be 2/, where A, is the largest eigenvalue of D714,
(12) is zero at 0 and X, and reaches its maximum at )\, /2. This corresponds to ordinary Jacobi
iteration. By taking o smaller, the point at which (12) reaches its maximum and its right zero are
pushed to the right. This likely increases the number and moves to the higher end of the spectrum,
the eigenvalues A; of D~'A which have their corresponding v; close to 1. The best choice appears
to be o = 4/(3).). A graph illustrating this is given in [5].

If the diagonal is not available, as in the case of the Schur complement matrix C in (6), damped
Jacobi preconditioning can’t be used. Instead we propose to use damped Richardson preconditioning.
H M~ represents two steps of damped Richardson iteration,

M~'A= o2l - ad)A

so that « should be chosen to be o = 4/(34,), where X, is the largest eigenvalue of A.

Thus we propose to use damped Jacobi preconditioning or damped Richardson preconditioning
much as smoothing is used in multigrid iteration, to handle the large eigenvalues of D14 or A.
We propose to combine this with coarse grid deflation, which attacks the smaller eigenvalues. The
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deflation method of Nicolaides [6] to solve Au = f where A is an nzn symmetric positive definite
matrix may be described as follows. Let F be an nzm matrix whose columns are a set of linearly
independent vectors. First solve Au = f in the subspace £ generated by the columns of E. This
amounts to solving

ETARd=ETF. (13)

Then solve

A(I—Py=f- AEd (14)

in span{E}t, where P is the projection operator

P=E(ETAE)'ET A, (15)

which is the orthogonal projector in the norm
llella = (=7 Az)!/2.
Then

u=Ed+ (I - P). (16)

The effect of (13) is to find the best approximation in the norm J|-||.4 to the solution u to Au= f
which can be found among linear combinations of the columns of E. Since m steps of conjugate
gradient iteration does the same thing over the Krylov subspace (A,r%,m), the effectiveness of
deflation depends on the solution being better approximated by the columns of E than the Krylov
subspace. In [3] we proposed defining the columns of & in certain situations to reflect known
qualitative features of the solution such as being nearly constant along certain lines in the domain.
More generally, we propose to define the columns of E using a nodal basis for a coarse grid over
the domain. The matrix F then defines an interpolation operator mapping the coarse grid to the
problem grid.

In [4] we showed that if the system (1) arises from the finite element discretization of a second
order elliptic partial differential equation or system of second order elliptic partial differential equa-
tions satisfying standard ellipticity assumptions, and if the finite element grid is quasi-uniform, the
effect of replacing the Schur complement matrix C by C(I — P) is to improve tl‘le b?und on the
condition number by raising the lower bound on the smallest positive eigenvalue. Likewise the eﬂ?ct
of replacing the matrix A by A(I — P) is also to raise the lower bound on (.‘.he smallest positive
eigenvalue. The matrix A(I — P) is also the Schur complement matrix obta'med when the _us.ual
nodal basis is replaced by the union of a nodal basis over a coarse grid along with a space consisting
of functions vanishing at the nodes of the coarse grid. Such a decomposition was proposed to solve
indefinite problems in [8).

3 Experimental Results

We consider the driven cavity problem. The region € is the unit square. The boundary conditions
are u = 0 on the bottom and sides of the square and u; = 1, uy = 0 on the top. of the square. .A
rectangular grid was used. We used piecewise biquadratic polynomials to a.pp.roxzmate the veloc{ty
and piecewise bilinear polynomials to approximate the pressure. It was shown in [_7] that these. ﬁ.mte
element spaces satisfy the compatibility condition (4). For 4 processors the. region ) was dlvx.ded
into 4 rectangles each half as long and wide as Q. For 16 processors the region £ was divided into
16 rectangles each one fourth as long and wide as Q. ) )

We consider both a regular grid over {} containing 167 or 322 rectangles and an irregular grid
containing 202 rectangles. For the irregular grid the rectangles are obtained from z;, 1 — z;, and
%, 1 — u;, where the 2; and y; are given by 0, .02, .04, .08, .12, .16, .20, .2'5, .39, .40: .50.

We first solve the Stokes problem by solving (6) by conjugate gradient iteration, Where. the
Poisson systems (7) are solved to convergence by ordering them as (8) and solving (10) by direct
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methods and (9) by conjugate gradient iteration. Our resulis are given in Tables 1 and 2. SDEFM
indicates that deflation with 9 coarse grid basis functions along with damped Jacobi preconditioning
was used in the solution of (9) and that (6) was preconditioned with the lumped mass matrix L.
SDEFISM uses this same preconditioning for the solution of (9) but preconditions (6) with damped
Richardson preconditioning applied to L~*C. SDEF335M uses a finer coarse grid containing 33
basis functions, SDEF33NDSM orders the columns of E in this coarse grid by nested dissection
to decrease the number of arithmetic operations required. In the last two entries in Table 2, no
preconditioning was used in the solution of (9) but deflation with a coarse grid containing 9 basis
functions was used to precondition either L~1C or the matrix obtained from damped Richardson
preconditioning applied to L~1C. The convergence criteria were that the 2 norm of the original
residual be reduced by a factor of 10° for (6) and that the I? norm of the residual be less than 10~°
for (9).

In all cases we set up the Schur complement matrix F explicitly. To do the deflation applied to
F, we first orthogonalized the columns of E with respect to the inner product #7 Fy to obtain V
so that VT FV is the identity matrix. The vectors in F'V were retained in memory to facilitate the
evaluation of F(I — P)p. This eliminated the need to set up ET FE. Deflation applied to L~1C was
done in the same way. The number of operations required to orthogonalize the columus of £ and
evaluate (I ~ P)p can be reduced if the nodes in the coarse grid are ordered by nested dissection.
To determine o we estimated the largest eigenvalue of D™'F or L~1C by the power method.

The timings we give are the solution times. Not included is the time to set up the matrix K,
reorder it as in (8), and set up F'. Also the time to orthogonalize the columns of E is not included.
On 16 processors this setup time varied from about 4% to 20% of the solution time, depending on
the size of the problem and the machine used. On 4 processors it was as high as 30% of the solution
time on the iPSC/860. If the Stokes problem is to be solved repeatedly in a time splitting for the
time dependent Navier-Stokes equations, the setup time is even less significant.

The results seem to indicate that damped Richardson preconditioning for L~!C is worthwhile
for 16 processors. The effect of damped Jacobi or damped Richardson preconditioning and deflation
overall, however, was less than when applied to the cantilevered beam problem, where their combined
use would typically reduce the number of iterations required by about a factor of four. Experimental
results for the cantilevered beam problem are given in [5]. This greater success for the cantilevered
beam problem may be because it is quite ill-conditioned. Defation did not seem to be very effective
when applied to L~!C, perhaps because it already is a well-conditioned matrix.

The timings in Table 2 indicate that it is hardly worthwhile increasing from 4 to 16 processors,
particularly on the iPSC/860. We think this is due to the fact that the work each processor has to do
in each iteration to solve (9) is proportional to the number of separators coincident with its subregion.
Each subrectangle in the 4 processor decomposition has 2 sides while interior subrectangles in the
16 procéssor decomposition have 4 sides. This means that for the same size problem the amount of
work per processor for that phase of the computation remains the same. We expect to see reasonable
speedup when the number of processors is increased beyond 16, but haven’t had a chance to do the
experimentation to confirm this yet. The values given for the numbers of iterations to solve (9)
are totals summed over the whole solution process. We have found that the number of iterations
required to solve (9} decreases significantly as one nears convergence of (6).

We now consider solving the Stokes problem using (11). Here (9) is not solved to convergence in
each iteration and the previous procedure then is a preconditioner for a Richardson type iteration
on (5). In our experiments, we defined C in (11) by stopping the iteration after N, iterations or
after our previous convergence criterion was passed. Likewise we defined K in (11) by stopping
the iteration after N, iterations or after our previous convergence criterion was passed. We picked
N; and N, using our experience gained from our previous experiments. In [2], the more sensitive
number Ny was picked by estimating {I — K- K||; and using the theory developed.

We found that if Ny and N3 were not chosen sufficiently large, the algorithm would report
convergence prematurely. Thus unless the iteration (11) is used carefully it doesn’t seem to be
robust. For the preconditionings of SDEFIM and N; = 20, Ny = 5 with the regular 16x16 grid
on 16 processors, we obtained convergence on the iPSC/2 in 58.18 seconds. The total numbers of
iterations of (6) and (9) were 43 and 463. This is better than the result reported in Table 1. For
the regular 32x32 grid the best we were able to achieve was convergence in 388.91 seconds with
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16x16 32x32
289 eqns in (6) | 1089 eqns in (6)
177 eqns in (9) | 369 eqns in (9)
no precond. 57,1742 63,1646
(66.75,10.36) (251.11,25.54)
SDEFIM 37,633 42,965
(65.99,9.91) (278.88,30.90)
SDEF9SM 23,530 24,710
(62.41,9.01) (246.86,26.14)
SDEF33SM 23,319 24,465
(76.19,9.88) (273.67,27.31)
SDEF33NDSM 23,319 24,465
(54.60,7.87) (220.12,22.72)

399

Table 1: Tterations and Timings for 16 processors on regular grid. Numbers are number of iterations
required to solve (6) and total number of iterations required to solve (9). Numbers in parentheses
are timings in seconds on the iPSC/2 and iPSC/860.

4 processors 16 processors
441 eqns in (6) | 441 eqns in (6)
77 eqns in (9) | 225 eqns in (9)
no precond. no conv. 1no conv.
SDEF9M 38,688 38,785
(169.50,14.51) | (105.81,13.74))
SDEF9SM 22,525 23,612
(177.24,14.66) | (94.20,12.21)
SDEF33SM - 22,432
(115.81,13.60)
SDEF33NDSM - 23,432
(88.08,11.47)
MD 36,2011 -
(218.23,19.49)
SMD 22,1578 -
(230.08,19.71)

Table 2: Iterations and Timings for 4 and 16 processors on irregulaf grid. Numbers are numb(‘er
of iterations required to solve (6) and total number of iterations required to solve (9). Numbers in
parentheses are timings in seconds on the iPSC/2 and iPSC/860.
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Ny = 25, Ny = 8. The total numbers of iterations of (6) and (9) were 78 and 1071. This was far
worse than the result reported in Table 1.
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