CHAPTER 7

Spectral Analysis of the Interface Operators Associated
with the Preconditioned Saddle-Point Principle Domain
Decomposition Method

Frangois-Xavier Roux*

Abstract .

The matrix of the interface problem associated with the domain decomposition method
via Lagrange multipliers is compared with the Schur complement matrix. The local contribu-
tions of one subdomain to both interface operators are proved to be the inverse each one of
the other. Then, some specific spectral features of the matrices of the primal and dual Schur
complements are shown that entail the conjugate gradient algorithm to converge faster for the
duat Schur complement problem than for the standard primal Schur complement. At last, the
preconditioning of the dual Schur complement by the interface stiffness matrix is studied .

1. Introduction .

In a companion paper (Farhat, 1991), the domain decompostion method via Lagrange
multipliers, also called saddle point principle domain decomposition method, is thoroughly
presented and generalized to the case of piece-wise plynomial Lagrange multipliers. Also,
results obtained with the parallel implementation of the method for solving real-life structural
analysis problems are presented .

In this paper, some duality properties between the matrix of the condensed operator on
the interface associated with the saddle point principle domain decomposition method, that
was introduced in Destuynder & Roux (1989) and Farhat & Roux (1991), and the Schur
complement matrix (Bjordstad & Widlund, 1986), are shown. In the sequel we will refer to
the matrix of the condensed operator on the interface associated with the saddle point princi-
ple domain decomposition method as the dual Schur complement mairix .

Some special features of the spectrum of the duat Schur complement matrix are shown in
section 3. This matrix has a very few high cigenvalues. The "super-convergence” effects due
to these features are shown in section 4. In section 5, we give an explanation of the
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unstability of the dual Schur complement method due to the loss of orthogonality in the con-
jugate gradient algorithm, and we present a reconjugation procedure in order to get rid of this
unstability. In section 6, an unexpensive preconditioner for the dual Schur complement
method is introduced. Finally section 7 offers some conclusions upon the practical com-
parison between the primal and the dual Schur complement methods .

2. Relation between the Schur complement and the dual Schur complement matrices .

Consider a subdomain £),, with boundary intersection with the interface T',. Number
the degrees of freedoms located on internal nodes first, and then the ones located on the inter-
face T, .

Using subscipt i for the internal degrees of freedom of subdomain Q,‘ ,» and I for the local
interface T, , the local stiffness matrix has the following block pattern :

Kxi' Ks' (1)
K, = Ko K| -

The contribution of subdomain Q, to the Schur complement matrix is as follows :
s = Koy ~ Ksh' K.;il Ky
Now, if no nodes on the global interface T’ belongs to more than two subdomains, the

matrix of the restriction on Q, of the discrete global trace operator on the interface is the
simple boolean matrix ;

B, = [Qn‘ le:l ,

where Oy; is a null matrix, and I,; the identity matrix with dimension equal to the numbers
of degrees of freedom on T, .

The sadd‘le.point principle domain decomposition method, consists in introducing a
Lagrange multiplier A in order to remove the continuity constraint upon the displacements

fields (Farhat, 1991). In the case of point-wise discrete Lagrange multipliers, the resulting
hybrid problem is as follows :

Kiu, =1, -B/ A
XBiu =0 @
s

Then, the conuibgﬁon 91-‘ the subdomain Q, to the dual Schur complement matrix D obtained
by a block Gaussian elimination of the displacements fields u, in the hybrid set of equations

(2) , takes the form :
Ksii Ks' - Os'
[ OSI ISI ] [KSI i KsII } [ Is[ ’ @

Ka Ky l|'[o0,
T Kg Ky Iy |

DY) = B/ K;'B,

]

satisfy the set of equations :

The following matrices :
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Ksii Csi + Ksi[ CsI = Os'

)
Kii Ci + Ky Cy = Iy
After eliminating the C; block in equation (4), we can derive from equation (3) :
-1
D = Cy = [Ky - Ky Kl Ky I = [S(’)] . ®

That means that the contributions of subdomain Q; to the Schur complement and to the dual
Schur complement matrices are the inverse each one of the other. This fact is the algebraic
translation of the duality of the two methods .

So, if there are no crosspoints on the interface I'; , the global Schur complement and
dual Schur complement matrices are as follows :

S = Zs(S) ,D=3YD® =% [S(‘)] ! .
s 5 s
Thus, the so called local Neumann preconditioner of the Schur complement method (Bjorstadt
& Wildlund, 1986, Le Tallec & al., 1990), is nothing else than the dual matrix D . So, the
results that has been proved for the local Neumann preconditioner of the Schur complement
method, apply for the dual Schur complement method with a local Dirichlet preconditioner .

Moreover, the condition numbers of the D and S matrices should be very similar, since it has
been proved that the condition number of the DS matrix, does not depend upon the mesh size
h, in the case where there is no crosspoint on the interface .

If there are some crosspoints on the interface, the local Neumann preconditioner of the
Schur complement method differs from the dual Schur complement matrix at the crosspoints
only, because there are several Lagrange multipliers for each degree of freedom attached with
these nodes (Farhat & Roux 1991) .

3. Spectral patterns of the primal and dual Schur complement matrices .

To illustrate this section, we have performed some tests with a three dimensional cantil-
ever beam, with a rectangular cross-section, splitted into two identical subdomains, each one
featuring a cantilever beam with a square cross-section and a 5 ratio of the length upon the
width .

We have implemented both primal and dual Schur complement methods for this problem,
with two different meshes, for a shear stress loading. With the first mesh, each sub-domain
has 400 nodes, and 1200 degrees of freedom, and the interface has 64 nodes and 192 degrees
of freedom. With the second one, the numbers of points per subdomain is 2720, that means
8160 degrees of freedom, and the number of points on the interface is 224, that means 672
degrees of freedom .

The dual Schur complement method has also been implemented with an even finer third mesh
with 20032 nodes and 60096 degrees of freedom in each subdomain, and 832 nodes and
2496 degrees of freedom on the interface. The others methods have not been implemented
because, in the particular case presented here, as the subdomains are geometrically identical,
the local matrices of the Neumann problem are identical too, whereas the local matrices of
the Dirichlet problem are not, due to the different location of the interface within each sub-
domain. The memory requirements for the storage of the LDL’ decomposition of all the local
matrices should have exceeded 128 Mwords .
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Figure 1 : different meshes of a cross-section of the cantilever beam .

The numbers of iterations to obtain 102 , 107 and 10 global residuals

{{Ku — bll/lb}l for preconditioned and non preconditioned primal and dual Schur comple-
ment methods figure in the following tables .

Mesh 1 : 192 interface d.o.f.
global residual 07 107 10° |
 primal 22 28 34
preconditioned primal 4 7 10
dual 7 16 23
preconditioned duat 4 7 10
Mesh 2 : 672 interface d.o.f.
global residual 102 07 | 100
primal 21 27 34
preconditioned primal 4 7 11
dual 7 17 24 ]
preconditioned dual 4 7 1%
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Mesh 3 : 2496 interface d.o.f.
global residual 10°° 107 107°
dual 9 18 27

The first conclusion we can derive from these resulis is that the dependance of the

number of iterations upon the mesh size is low, and that, without preconditioning, the dual
method performs better than the primal .
Furthermore, the preconditioned algorithms perform quite well, but, as preconditioning
roughly doubles the computational cost and memory requirement, because both local Neu-
mann and Dirichlet problems have to be solved at each iteration, the unpreconditioned dual
method compares quite well with the preconditioned ones .

We obtained the same kind of results with bigger and stiffer problems, with even a sharper
difference between the unpreconditioned primal and dual Schur complement methods .

After computing the various interface matrices and their eigenvalues we obtained the
values of the condition numbers :

Mesh 1 : 192 interface d.o.f.

primal 64.0
preconditioned primal 2.87
dual 64.6
preconditioned dual 2.87
Mesh 2 : 672 interface d.o.f.
primal 56.0
preconditioned primal 2.82
duat 60.1
preconditioned dual 2.82

Mesh 3 : 2496 interface d.o.f.
dual | 99.5

The reason why both preconditioned methods give the same resulis is clear. The matrix
of the preconditioned Schur complement method is DS, when the matrix of the precondi-
tioned dual Schur complement method is SD. As the matrices S and D are symmetric,

DS = (SD) .

But the values of the condition numbers cannot explain why the dual method performs
better than the primal one. In order to understand why it does, the spectral density of each
matrix has 1o be studied .

The following bar diagrams show the density of the specira of the preconditioned and
unpreconditioned primal and dual Schur complement matrices, for meshes 1 and 2 .

The ratio of the eigenvalue upon the smaller one figures on the x axis, and the number of
eigenvalues per interval, on the y axis. Both axes are drawn with logarithmic scaling. Only
one figure is presented for both preconditioned matrices, because their spectra are identical,
as we proved it above .
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Figure 2 : primal Schur complement , mesh 1.
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Figure 3 : dual Schur complement , mesh 1.
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Figure 4 : preconditioned Schur complement , mesh 1 .
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Figure 5 : primal Schur complement , mesh 2 .
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Figure 6 : dual Schur complement , mesh 2.
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Figure 7 : preconditioned Schur complement , mesh 2 .

The dual Schur complement matrix has a few large eigenvalues. On the opposite, the
primal Schur complement has a few small eigenvalues, that have actually the order of magni-
tude of the inverses of the largest eigenvalues of the dual matrix .

The faster convergence observed with the dual Schur complement method can be explained
by the "super-linear” convergence of the conjugate gradient method, that occurs when the
mairix has only a few exiremal eigenvalues. We shall give more details in the next section .
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These different pattens of the spectra of the matrices can be explained with both
mechanical and mathematical viewpoints .

The Schur complement matrix is the matrix of a condensed primal problem on the inter-
face. It is a stiffness matrix. Its lowest eigenvalues correspond to the low frequencies of the
interface, and so to the lower frequencies of the global structure. The largest eigenvalues
correspond to the highest frequencies, that means to the local modes .

When decreasing the mesh size, the number of medium and high frequencies that can be
numerically captured increase, while the lowest eigenvalues, that are already a good approxi-
mation of the physical low frequencies, do not change .

On the opposite, the dual Schur complement matrix is a compliance matrix, wich few
highest eigenvalues are of the order of magnitude of the inverses of the lowest eigenvalues of
the global structure .

As the first iterations of the conjugate gradient capture mostly the coordinates of the solution
according to the eigenvectors associated with the highest eigenvalues, the dual Schur comple-
ment method gives very quickly a good approximation of the global displacements .

On a mathematical point of view, the spectral patterns of the matrices can be explained
by the compactness of the continuous operators .

The local Schur complement matrix S®) is the discretisation of the mapping of the trace on
the interface of the diplacements field solution of the linear elasticity equation on the sub-
domain onto the external forces to be applied on the interface, in order to get the same dis-
placements .

Under certain assumptions, this mapping, that is called a Steklov-Poincaré operator (Agosh-
kov, 1988), is a one to one continuous mapping of (HEXT,))* onto (HV2A([T,))* .

The local dual Schur complement matrix D) is the dicretisation of the reciproqual mapping
from (H'I’Z(I‘s ))3 on (Holo’z(l‘s ))3 . Due to the compactness of the mapping of (H(}(’,z(l", ))3
into (HV%(T,))?, the continuous operator associated with D®) is compact from (H™A(T,))?
on (HY(T,))* . The same is true for the global interface operator that is the sum of the local
ones .

Hence, the eigenvalues of the continuous dual operator form a decreasing series converging
to zero. This fact explains why the eigenvalues of the discrete D matrix tend to accumulate to
zero when the meshsize decreases, as it can be seen on figures 3 and 6, and on the figure 8
below .
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Figure § : dual Schur complement , mesh 3 .

4. Convergence of the conjugate gradient algorithm for matrices with a few extremal
eigenvalues .

The conjugate gradient algorithm consists in computing, at iteration number j, the pro-
jection, with respect to the dot product associated with the matrix K, of the golution of the
equation Kx = b onto the space xo + span< ro, Krg, K’rg, - -+ , K/7lrg , where xo is
the starting vecior, and rg the residual b —~ Kxj .

The j eigenvalues, A{ <A < - -+ < AJ, of the orthogonal projection of the operator K upon

the Krylov space span g, Krg, K’rg, - -+ , K/ 'rg are called the Ritz values .
It can be shown, using a minimax argument, that for any fixed k, AJ decreases and A/,
increases. Hence, if we note Ay < Ay < -+ - <A, , the eigenvalues of the K matrix, when A/

is in the interval [Ag , Ag.] it is also true for any superior value of j . In the same way, once

Afj is in the interval [A, 4y , A, ] , it is also the case for any larger value of j .

In van der Sluis & van der Vorst (1986), it was proved that once the extremal Ritz values
have entered what is refered as their final intervals, then the following conjugate gradient
iterations behave as if the corresponding eigenvalues of the matrix were not present. That
means as if the spectrum of the matrix and, so, the condition number were reduced .

In order to illustrate this points, we have performed some tests with a 200x200 diagonal
matrix, with eingenvalues between 1079 1o 16°7 . So, the condition number of the matrix is
10° , that is representative of lots of real-life structural analysis problem .

The eigenvalues are clusicred into two subsets. The largest eigenvalues vary from 10*5 10
10°3 , and the smallest ones from 10795 10 107,

In the figures above, we present, for various dispatchings of the eigenvalues, the evolution of
the residual |IKx — bl/HIbll , with b = diag (K) .
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The number of iterations figures on the x axis, and the logarithm of the residual on the right
y axis .

At each iteration, we computed all the Ritz values, and they figure with a x mark on a verti-
cal line. The horizontal lines show the exact position of the eigenvalues belonging to the
coarser cluster. The left y axis figures the logarithm of the eingenvalues .
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Figure 11 : 20 large , 180 small eigenvalues .
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Figure 12 : 180 large , 20 small eigenvalues .

On all these figures, it can be actually seen that, once each one of the eigenvalues of
the coarser cluster is approached by a Ritz value, then the residual tends to decrease in a
linear way, with a convergence ratio that is exactly the same as the one we obtained for a
matrix with only one cluster of eigenvalues and a 10! condition number .

Accordingly with a suggestion made in van der Sluis & van der Vorst (1986), the residual
tends to be the most oscillating when one of the Ritz value is far from any of the actual
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eigenvalues of the matrix .

But the most interesting point lies in the comparison between the situation where there
are only a few large eigenvalues, and the opposite situation. Because, firstly, it is vey clear
that the upper part of the spectrum is approximated much faster than the lower part, that is
hardly a surprise considering the way the Krylov space is build. So, the starting point of the
fast linear convergence is reached much eardier in the case where the highest part of the spec-
trum is coarse than in the opposite case. Secondly, the residual tends to decrease faster at the
first iterations when there are few large eigenvalues. Because having a good approximation of
the coordinates of the solution according to the eigenvectors associated with a part of the
spectrum is more effective in reducing the residual when this part is the upper end than when
it is the lower end of the spectrum .

These conclusions are totally conforming with the results we obtained in comparing the
beheavior of the primal and dual Schur complement methods and the spectral patterns of the
associated interface matrices .

5. Stability and orthogonality .

The rapid convergence of the largest Ritz values 10 the eingenvalues of the matrix with
a coarse upper end of the spectrum was already studied in Parlett (1980). But it was also
shown that such a spectral pattern causes rapid loss of orthogonality of the direction vectors .

The effects of rounding errors on the orthogonality are all the more amplified at the following
iterations as they concern eigenvectors associated with eigenvalues that are large in propor-
tion with most of the others. Increasing the precision of the computation is not effective,
because the propagation of the errors depends in a polynomial way upon the eigenvalues
ratio.

A simple way to get rid of the distrasous consequence of the loss of orthogonality upon
the convergence of the conjugate gradient algorithm consists in filtering the roundin errors
wit the help of a reconjugation process (Roux, 1990) .

The most efficient one consists in keeping all the direction vectors p, and their products by
the matrix Kp, . Then, at ech iteration of the conjugate gradient algorithm, the new direction
vector is computing in such a way that it is actually conjugate to all the previous ones with
respect to the dot product associated with the matrix, according to the following formula .

X " (r; . Kp)
i =T; + , Wil =t =

This reconjugation process entails, at iteration number j, the computation of j dot products
(r; , Kp, ), and of a nxj matrix vector product to determin the new direction vector.

Using such a process would be a non-sense, in the case of a sparse matrix K, because it
would cause a tremendous increase of both CPU time and memory requirement .
But in the scope of domain decomposition method, the conjugate gradient algorithm applies
only to inferface unknowns, whereas computing the product by the primal or dual Schur com-
plement matrix requires a forward and backward substitution for each subdomain. So, the
relative cost of the reconjugation process on the interface is very low. This has been proved
by all the experiments we realized with real-life stuctural analysis problem .

All the results presented in this paper, and particularly the ones of the previous section,
were obtained with applying the total reconjugation process .

Nevertheless, the cost of the process can be even more reduced by limiting the number of the
direction vectors actually kept. In such a case, the optimal strategy consists in keeping the
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first direction vectors, instead of the last ones as in the GMRES algorithm for instance,
because the subspace generated by these vectors is to be close to the subspace generated by
the eigenvectors associated with the highest eigenvalues .

If the maximum number of direction vectors stored is equal to nd+1 the formula to compute
the j-th direction vector, with j > nd becomes :
k=nd~1 (r; ,Kpg)
= Y P+ ,with Y =— —/———.
P; i T Y¥i-1 P ,E.O Ye Pk (Kpg - Pe)

The tests we performed shew that keeping a small number of direction vectors (a few tens for
several thousands degrees of freedom on the interface) was enough to get almost the same
stability of the conjugate gradient than with the complete reconjugation .

6. An efficient preconditioner for the dual Schur complement .

For all the tests we have made with real-life problems, preconditioning the dual Schur
complement method with the local Dirichlet solvers, that is, in the case where there is no
crosspoint on the interface, with the primal Schur complement matrix, never entailed a
diminution of the number of iterations by a factor larger than two .

So, this preconditioner is not actually efficient, even though it drastically reduces the condi-
tion number of the problem, because the CPU time and memory requirement are almost dou-
bled, when using it .

Another way to precondition the dual Schur complement matrix, wich was introduced in
(Farhat & Roux, 1991), consists in using the restriction on the interface of the global stiffness
matrix KII .

As the dual Schur complement matrix is a compliance matrix, it must be preconditioned by a
stiffness matrix. The primal Schur complement is the optimal one, theoretically, but it is too
expensive in practice .

Computing the product by the interface stiffness matrix, consists in computing in each
subdomain ., the product by the bloc matrix K, and then assemble all the local contribu-
tions as for the Schur complement .

The main difference with the local Dirichlet preconditioner lies in the fact that the block
matrices K;; are sparse, and so, this process is unexpensive on both CPU time and memory
requirement viewpoints .

All the tests performed with this preconditioner leads to the same conclusion that it
does not modify the convergence at the first iterations, but it increase the convergence ratio
when the starting point of the fast linear convergence is reached .

In order 1o understand this phenomenon, we computed the eigenvalues of the preconditioned
dual Schur complement matrix, for the three different problems introduced in section 2 . The
condition numbers were as in the following fable .

Condition number of the preconditioned dual Schur complement
Mesh 1 : 192 interface d.o.f. 383
Mesh 2 : 672 interface d.o.f. 69.0
Mesh 3 : 2496 interface d.o.f. 1295

The comparison with the tables in section 2 shows that the condition number is not generally
reduced. But the spectral patterns of the preconditioned dual Schur complements presented in
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the figures below, show a concentration of the lower parts of the spectra, whereas the highest
eigenvalues do not change a lot .
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Figure 13 : spectrum of the preconditioned dual matrix, mesh 1.
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Figure 14 : spectrum of the preconditioned dual matrix, mesh 2 .
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Figure 15 : spectrum of the preconditioned dual matrix, mesh 3 .

These patterns explain why the linear convergence ratios obtained once the largest Ritz
values have entered their final intervals are better than the ones obtained without precondi-
tioning. The possible increase of the condition number does not cause any trouble because it
is only due to the increase of a very small number of large eingenvalues .

So, preconditioning with the restriction on the interface of the global stiffness matrix
and with the primal Schur complement matrix appears to have similar consequences for the
lower part of the spectrum of the dual matrix .

In the first case, the contribution of subdomain €, to the preconditioner is the block K.
and in the second case, it is the local Schur complement matrix : Ky — Koy K7} Kz -

The smallest eigenvalues of the dual Schur complement correspond to the inverse of the larg-
est eigenvalues of the primal Schur complement. As the block Ky; K K,y is symmetric
and positive definite, for a vector v such that ;

{{Z KSII - Beeli K;II Ksi!}v s V] > ([Z M,]V y V) s

then [F_‘, K,,,] v, v) > ﬁz Kz K3} KS,-,]V , v} .
5 s
and ([E K_,”] v, v} > ([z M,}v 2V} .
¥ 5
The M, matrtices are the local mass matrices .
The minimax argument suggests that the highest eigenvalues of the matrix [Z K,,;} should

x

be close of the highest eigenvalues of matrix ¥ Ky — Ky K3} K,z ! , and so, the sub-
3

spaces generated by the associated eigenvectors shouid be close oo .
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This gives an heuristic explanation of the fact that, when used as preconditioners of the dual
Schur complement matrix, both matrices have similar effects upon the lower end of the spec-
trum of the dual matrix, that appears to be tightly related to the upper end of the spectrum of
the primal one .

7. Conclusion .

Although both primal and dual Schur complement matrices have similar condition
numbers, the conjugate gradient algorithm converges much faster for the dual problem than
for the primal one, provided that the reconjugation procedure presented in section 5 is imple-
mented . '

The primal Schur complement method can be very efficiently preconditioned by solving local
Neumann problems, but in this case, as it was shown in Le Tallec & al. (1990), the same
unstability occurs than with the dual Schur complement method, and so, the use of the recon-
jugation process is mandatory .

One iteration of the primal Schur complement method with the local Neumann precon-
ditioner is roughly twice more expensive than one iteration of the dual Schur complement
with the unexpensive preconditionner presented in section 6, as the main part of the computa-
tions lies in the solution of the local problems, and that the solutions of the local Dirichlet
and Neumann problems require similar amounts of computation .

Furthermore, the main part of the data lies in the Choleski or Crout factorizations of the
matrices of the local problems, and so, the use of the local Neumann preconditioner for the
primal Schur complement method nearly doubles the total memory requirement .

So, the primal Schur complement method with the local Neumann preconditioner is
twice more expensive, per iteration, than the dual Schur complement with the preconditioner
presented in section 5, on both computation cost and memory requirement viewpoints .

Futhermore, each time we compared both methods for solving real-life structural analysis
problems, the number of iterations to get a given value for the global residual with the primal
method has never been less than half the number of iterations necessary with the dual one .

The conclusion that can be derived from these tests is that the dual Schur complement
method is more cost-effective than the primal Schur complement method, as it requires at
worst the same global CPU time and twice less memory. And it is better suited for being
implemented on distributed memory parallel machines, as it was shown in Farhat & Roux
(1991) .
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