CHAPTER 27

The Parallel Block Preconditioned Conjugate Gradient
Algorithmj

Wang Jin-xian*

Abstract In this paper we discuss the parallel algorithm of block preconditioned conju-
gate gradient for obtaining a numerical solution of elliptic partial differential equation boundary
value problems on a MIMD computer. In section 2 we give two algorithms: BLICG(1) and its
modification BLICG{n). In section 3 we discuss their convergence and point out that algorithm 2
has almost the same convergence rate on any number of processors as on one processor even for
an anisotropic problem. In section 4 we give a numerical example

1. Introduction

Preconditioning by incomplete decomposition is one of the standard techniques in iterasive
methods for the solution of large sparse linear system. In combination with conjugate gradiemt,
the so-called ICCG algorithm is one of the efficient methods for solving symmetric positive definite
linear systems arising in the numerical solution of elliptic partial differential equation. Recent years
ICCG for multiprocessor computers with local memory has been of great interest. We partition
the domain into a number of strip subdomains and call the interface between two subdomains an
inner boundary. Each processor is related to one subdomain and inner boundary. However, the
main problem is that the convergence rate will decrease when the number of processors increases
for the same number of mesh points, especially for anisotropic problems. In this paper we are
concerned with finding a block preconditioner for a parallel CG algorithm. In section 2 we give an
algorithm BLICG(1) and its modification whose basic idea is to increase the completeness of the
decomposition on the inner boundary. In section 3 we discuss some problems about the convergence
and convergence rate of the algorithm and come to the conclusion that algorithm BLICG({n) is of
the same convergence rate on N{N > 1) processors and on one processor. In section 4 we give a
numerical example.

2. The parallel block ICCG algorithm.

We consider elliptic partial differential equations with Dirichlet or Neumann boundary con-
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{ "'f;a(z) !l)%% - %b(z, !l)g% + c(xr V)" = f(zx y) (z, y)el= (0’ 1) X (0’ 1) (1)
a(z,y) 3% + Bz y) = 9(z, ) (z,9) €20

C(z,y) 2 0,a(z,y) > 0,b(z,y) >0

The equation is discretised in the usual way with a five-point difference scheme. We obtain
the following system of linear equations

Ay=f 2

Here A is a positive definite M-matrix, u is the discrete solution vector and f the discrete right hand
side. We consider ’splitting’ A = K — R with a symmetric positive definite preconditioner K and a
remainder matrix B. A preconditioned Conjugate Gradient(PCG) algorithm with preconditioner
K i as follows:

Let u(® be an arbitrary initial approximation to u and r® = § — Au(®), the initial residual,
and for k=0,1,--- do

Kz(*) = ok

Bre = (z(k)’ Kz (a1, Kz(6-1)), g, =0

P(k) = z(¥k) -+ ﬂkp(""l), P(—-l) =0 (3)
oy = (z(k), Kz(5)) /(p(k), Ap(k))

u(k"’l) == u(k) +akp
rlk1) = o (B) _ o Ap(F)

until convergence. In the algorithm (3) the crucial point is the solution of the equation
Kz(®) = p(¥) . (4)

There are many kinds of preconditioners|1-3,5-8] but the incomplete block decomposition
of A is one of the most effective. We partition the domain 02 into N strips 13,05, ..., 2y and
N-1 interior interface 9{1y 3,82 3,..., 8y ~1,v; each {; has n lines. Every subdomain (; and
3€);—14 are treated by one processor and some exchange of data among processors is needed.
After renumbering of the points, the coefficient matrix 4 has following form:

A; : CEO
Az T 6%, 63,
¢
T
CR—10
T
A= ol -t
C1,0 C1x PoB
Cg, O3, : Bs
L Cr—1,0 Ot By-1 J

Where 4;{(i = 1,..., N} are block tridiagonal matrices.

D;, BY;
By D;z Bf,

Bi,n—-l Di,n
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D; ;{5 = 1,...,n) tridiagonal matrices, C;p = (0,0,....¢;0), Ci,1 = (:,1,0,..,0), By (5 =
1,..,n — 1), ¢; 0,61 are diagonal matrices. For direct solution algorithms based on the same
decomposition see [2a].

Algorithm 1 - BLICG(1)

We take a preconditioner K in the form

K=LA'LT (5)
Where
[ 2,
La
: Aéyi
Ln - Bia Az
Cio C1,1 oAy B o1 Ain
Cz,0 C32,1 ADg
L Cn—1,0 CN=1,1 Ay ]
/\=diag{AliAZ:'")AN»A].)"':AN—I}

Ny = d'ag {Ai,l) Al',Z, Ty Ai,n}

Aij = Ds1 r
/\,—_2 = .D;,z — Bs',l /\:11 B‘-,l

(6)

Nin = D;n - Bs n—1 /\, é—-l Bt n—1

O = By — Cio N CFp — iy AGH 1 CFy

In (6)A;} (F =1, --,n— 1} are usually full matrices. In order to ma.intain the original sparsity,
we use the banded approximate inverse IL; ; = [A[ 1](1’) instead of A;}. Here [C]®) denotes the

matrix with entries
otherwise

[c ](p)_{cmlt—al<p ™

p > 0 is an integer. We obtain

Az = Diz— Bi IL, BT,
- (®)
Rin = Ds n t n—-lnt n-—lB i1

_A_,' = By — c,on;,nc,,o c 1H1+1 IC; 1

Where
L, = [7.\";1}(?) (G=1--,n-1)

We denote the matrix corresponding to K by K :

E=TIA'I° (9
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The remainder matrix B =K — A is

B oo
FA © R,
R = Ex Eg-—l,l (10)
0 -R.l,l : EL,B
L 0 RBv_1a : EN—L,B_
B = dionl0, BN ~Tn) By -, Bunea ks = Tes) B
Bii =(0,¢, 1’\s1+1 1BH1,10, 0)
Rip = co(Nn — I,n)ef o e 1(’\1+1 1= iy, 1)0- 1

The main problem with the algorithm 1 is the convergence rate will decrease rapidly when
we increase the number of processors for the same mesh, especially for anisotropic problems of the
type discussed in next section. This is because of the incompleteness of the decomposition of K in
two respects: 1) The exact inverse of the tridiagonal matrix has been approximated by a banded
matrix. 2} There exists remainder matrix 2 = A — K corresponding to the interior interface.
When the number of subdomains increases, the fraction of boundary points also increases. In
order to improve the convergence rate, we take K such that it is a complete or almost complete
decomposition of A on the interior interface. Thus, we consider the following algorithm.

Algorithm 2 - BLICG(n)

We consider the following preconditioner K

2 e—lwp
K=LXI7T (11)
where
[ . . 1
Ly .
~
Ls
Ay _
~ ~ : B Aiga
L= LN v 12’,:‘ = o -
~ T Bin—1 N
1,0 €1,1 : Al,l i, P,n
~ TP
2,0 3,1 g, By
~ : ~ ~
L ENw1,0 EN=1,1 - AN_yNez By N ]

A =diag{’\l;KZ)"’;xNyAl,l;' ."AN—].,N—l}

AN =diag {Ai1, Aizy o, A}
€i,00 As,; are the same as in algorithm 1.

’é'i',l = (E’i,l:?{i,Z; o 1?{1',1;)1' (i =1,---, N — 1)
E’t,l =&y, 1
G = —C g~ 1H;+1,,—1B Frig-1 (F=2,-,n)
~ _ v, ~r ~ ~T ~
Sig =B - C"OH‘ o gc""fﬂ"ﬂd‘:’ﬂ‘ =B [Byy |V, By =0 (12)
A,s 1—_c'£0Ht ;—-ln
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The remainder matrix, £ =K — 4, is
gl o]
B HE, o0
0
-~ ~ ~
R= Ry By_1,1
o ﬁl,l £a,1 7’3'
0 Ez‘]_ 72 §2,2 Ts
| 0 EN—l,l TN-1 ﬁN—l,N—lJ
where
B=F
~ ~ —_ -1 ~ — =]
12{,1 = (0, Ci,l(/\,'_}.]_,l - H{+1,1)B?.';.1,1a Tty Ci,ﬂ-—l(/\i+1,n-—1 - H"+1,"—1)B£+1,n—1) r
~ . ~ e ~ =1 —1 ~
Ry =Cio(Nn — I,n)Ch + 2 Coi(Riin; — Win,d)OF + A1 (B — [B 104,
(13)

Ayp=0
B = CiolAin' =~ en)CE 0 (=2, N 1)
When j = 1, algorithm 2 coincides with algorithm 1.

3. Some problems on convergence and convergence rate for
algorithm BLICG(n)

In this section we discuss some problems about the convergence and convergence rate of the
algorithm mentioned in the previous section. Let Sy = {(¢,75) li<i<j<n}

Theorem 1. Let A = (A; ;) be a block N x N positive definite M-matrix, 4;; is diagonally
dominant, 4; ; < O(¢ # 7}, then there exists for every § C Sy a lower block triangular matrix
L = (L; ;)(L; s = I} and block diagonal matrix D = diag {D;, -, Dy} and R = (R, ;) with

Li; =0 (i,7)E8
R; ;=0 (3,5)es

and D; are diagonally dominant M-matrixes, such that A = (D + L)D~ (D + L)T — R is aregular

splitting.
Proof. We can take
i—1
Dy =A;5 — E L.',J'DJ-—IL?::,. (i =1,---, N)
(‘,J)-EI s
J._l « B . -
Lij=Aiz— > LixDg'LT, (5,5) €S, 1>
k=1 (14)
(i, k) € 39,
e Ees
(5, 5)Es

I

7—-1
R; ; 3 LiuDpLY,
o=l
(,k)ES,
.k ES

In (14) the D; are diagonally dominant M-matrices!®, so the D; are positive definite M-matrices,

hence D! >0, L; ; < 0, R;,; > 0, and satisfy the relation
A=(D+L)D"Y D+ L -R=K-R
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Since D~! > 0,L < 0,R > 0, it can be shown easily that (D + L)~ exists and (D + L)™' >
0, DD+ L)"1 > 0, hence K= (D+L)"TD(D+L)~! > 0,andA = K — R is aregular splitting.

Corollary. A natural selection of the index set § is § = {( 1 7) | Asy #0}. In (5),(6) the
incomplete decomposition K is undertaken with S, hence (5), (6), is a regular splitting. As for the
decomposition (11), {12} it would be complete if all inverse matrices were exact i.e, if A, were
used instead of x; 7 in(12). Because all A; g of {6) are diagonally dominant M-matrices, 7A; ; of (8)
are diagonally dominant also, so K of (9) is positive definite and algorithm 1 converges. Similarly
Kin algorithm 2 is positive definite also and algorithm 2 converges.

Application to anisotropic problems. Consider the following anisotropic problem

(g om=he < oo -

with the five-point difference scheme, the main submatrix of A is

2(1+e) -—e
_ —  2(1+¢) —e
& = (16)
—e 2(1+¢€}] . .

The entries of D! = (a; ;) decay along each row or column!¥, ie. there exists constant C; such
that oy ; < C’lr" JI where

r=(VE—-1)/(VE+1) and k= Anas(D:)/ Amin(D; )
)\mcm:(D ) =4 2+4€, /\mgn(D ) o 2 +€(7l'h)2 h= *-ﬁ
k=1+4+c1e, r=cqe
&5 -<— OI(CZG)I' 7l = Celi=dl, Cl,C'g, C are constants
~11(p) = li-Jl<p
~ [P { a; 5 = O(eP*L) otherwise

(an

te. In(10), | AL~ [=T8%a 3 | oy |=0(eP+?)
J=1
By induction from (8) we can prove that | A7t — I; ||l= 0(e?*1),5 = 2,---,n. So in (13), all
norms of submatrices &;, R.,l, R;_,, 7; are of D(s”"‘l)

I B lj=]| & - 4 J}=0(e*+*)
We have [9,theorem 3.13]

PET R < 1+RR{ ‘!;,A"" =0(s"")

(18)
;\(K"lA) =1-A{K"1R) = 1+ 0(eP 1)

Theorem 2. In algorithm 2 for preconditioner K, the eigenvalues of =14 are of form
1+ 0{sP+).

For algorithm 1, from (10) the norms of &;; only are of 0(1), hence A(K—_IA) = 1+0{1)
‘Therefore for anisotropic problem(16) when = <« 1 algorithm 2 is much more efficient than algo-
rithm 1.

When N = there is no interior interface, from (10) the Temaining matrix
B = diag{0, B; 1 (A, 1" — I 1) BY,,0,---,0}. Hence || B ||=0(eP*1), \(K~14) = 1+ 0(s"+1). So
algorithm 2 using N processors has the same convergence rate as ol One Processor.
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4. Numerical results.

We use algorithm 1 and 2 described in section 2 to solve problem(15).

We take the 5 point difference scheme with k& = 1/64, r = 10710, In table 1, N is the number
of processors, m the number of iterations needed for | rp, IS rrm =1 (f - AU("‘)),- and in (12)
we take II; ; diagonal matrices, i.e. p = 0. From the table we can find that the smaller the ¢ and
the bigger the N are, the more efficient the algorithm 2 is. In that case algorithm 2 has almost the
same number of iterations as the serial algorithm on one processor.

e=10"%]10"2J10°2 1071 [ 10°

Algorithm | N m m m m m

1 3 6 13 25 34

. 2 15 28 47 46 45

1 4 30 46 60 57 50

8 53 77 84 75 55

16 85 120 133 104 69

1 - — — — —

2 5 9 18 28 39

2 4 5 9 20 32 39

8 5 8 19 37 45

16 4 6 15 33 51
TABLE 1
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