CHAPTER 32

The Performance of an Explicit/Implicit Domain
Decomposition Procedure for Parabolic Equations on
an Intel Hypercube

Clint N. Dawson*

Abstract. A domain decomposition procedure for parabolic equations is described. In
this procedure, the computational domain is divided into nonoverlapping subdomains. The
equation is discretized by finite differences in time, and in space, a Galerkin finite element
method is used on each subdomain. Subdomain solutions are related by an explicit flux
calculation on the interfaces between subdomains. The interface fluxes are calculated in
a stable and accurate manner, thus no iterations between the interface and subdomains
are required. The method has been implemented on an Intel iPSC/860 Hypercube, and
comparisons between domain decomposition solutions and a fully implicit Galerkin solution
are presented for a set of test problems.

1. Introduction. In this paper, we discuss a domain decomposition algorithm, first
presented in [Dawson and Dupont, 90}, for solving equations of the form

¢} u— V-{aVu)+bu=f, onQx(0,T],
(2) u(z,0) = «¥(z), on 2,

on parallel processing computers. The domain C R? is assumed to have a piecewise
uniformly smooth, Lipschitz boundary, 8. The coefficients a and b are assumed to be
smooth and uniformly bounded, with ¢ > 0. For simplicity, we assume homogeneous
Neumann boundary conditions are given,
du

(3) Ez-f—z- = 0, on 9%} x (0, T},
where ng is the outward normal to 9Q; however, any standard boundary condition is
allowed.

In the approach considered here, the domain Q is divided into nonoverlapping subdo-
mains, separated by interfaces which are smooth d — 1-dimensional manifolds. Equation (1)

* Mathematical Sciences Dept., Rice University, Houston, TX 77251. The author wishes to acknowledge
Lawrence Cowsar for his assistance, and the National Science Foundation Center for Research in Parallel
Computation, for the use of their computing facilities,

386

EXPLICIT/IMPLICIT DOMAIN DECOMPOSITION PROCEDURE 387

is discretized by finite differences in time. At each discrete time level, an approximation
to the normal derivative along each interface is computed, using the current approximate.
solution. This information is then used as Neumann boundary data for implicit subdomain
problems. In each subdomain, the solution is updated to the new time level using a standard
Galerkin finite element procedure.

The approximate normal derivatives along the interfaces are calculated in an accurate
and stable manner; thus, no iterations between subdomains and interfaces, and no over-
lapping of subdomains are required. The price to be paid for this freedom is a constraint
involving an interface discretization parameter and the time step.

The rest of the paper is organized as follows. First, we present the algorithm in a
simple geometric configuration, and state an error estimate. In Section 3, numerical results
generated on an Intel Hypercube are presented for two-dimensional {est problems.

2. The basic procedure. In this section we will describe the method for a simple
case, a more general treatment is given in [Dawson and Dupont, 90].

Take Q@ = (0,1) x (0,1) and a = b = 1. Assume Q is divided into two subdomains,
and Qg, where the interface T' = {1/2} x (0, 1).

Denote by (-,-)x the L?(X) inner product. When X is §, we drop the subscript. Let
At = T/M for some positive integer M, t* = nAt, n=0,..., M, and g" = g(¢"). Also, let
atgn —_ (gn — gn_l)/At.

For functions 1 and p with restrictions in H{(€);), let

2

(4) D($,p) = 3 [(V4, V), + (#,0)0,] -

i=1

Note that such a function ¢ can have jumps in values across T, which we denote by [¢].
For definiteness, let [1)] denote the trace from 2, minus the trace from ;.

Given an approximate solution at time t™, the first step in updating the solution to
time t**! is the calculation of an approximate normal derivative on I'. Define a function

¢o(z) by

-z, 0<z<1,
¢2(27)= .Z'+l, "1_<_$SO,
0, otherwise.

Let H € (0,1/2), and set ¢(z) = ¢o((z — 1/2)/H)/H. Define
1
(5) B(0) = = [9z, 9)p(@)ds.
0
It can easily be shown that for ¥ sufficiently smooth,

< CH2
L*(D)

[ECEEECR

A domain decomposition procedure can now be described as follows. Let M; denote a
finite dimensional subspace of H'(Q;), j = 1,2, and let M be the set of L*(Q) functions
whose Testrictions to (2; belong to M;. For 0 = #® < ! < ... <tM =T, and U e M
given, define U,..., UM by

(6) (8,U",v) + D(U™,v) + (B(U™),[sh)r =0, veM.

388 DawsoN

Note that, since the boundary flux B(U”" 1) is known and the spaces My and My are
independent, (6) decomposes into two problems corresponding to and €9, which can be
solved in parallel.

In order to state an error estimate for (6), define the elliptic projection W(-,t) € M at
each 1 € [0,7] by

(M D{(u —W)(-,1),v)=0, veM.
Let the error in this projection be denoted by
(8) n=u~W.

The following theorem is proven in [Dawson and Dupont, 90],
THEOREM 2.1. Suppose that the solution u to (1)-(3) is sufficiently smooth and that
U® = W(-,0). Then there ezists a constant C, independent of the spaces M;, such that

T
max|(u = U)(-,)| € C {At + 125+ [im0l + H*%lmumx(o,m},

provided

2
9) At < 51—

An approximation to the interface flux which is fourth order in H can be obtained by
defining ¢ in (5) by ¢(z) = ¢s((z — 1/2)/H)/H, where H € (0,1/4), and

($~2)/12, 1<z<2,
—Bef447/6, 0<x <1,

da(z) =< Bx/44+7/6, -1<z<0,
—(z+2)/12, -2<z<-1,
0, otherwise,

In this case, the H? term in the estimate given in Theorem 2.1 is replaced by H*?3, provided
that At < H?/5.15.

We note that in this theorem there are no assumptions that require M; and Mg to
be compatible in some way. Also, the parameter H for the operator B is not necessarily
related to any aspect of the spaces M;; in particular, it is not required that ¢ restricted to
Q; have any relation to M.

The gstimate given in Theorem 2.1 appears to be suboptimal. In the example above, if
we choose M; to be the space of continuous, piecewise bilinears on ;, j = 1,2, the theorem
states that

max [|(u ~ U)(-, t")| < C(At + H?® + h? + H™'/21? In|hl).

Numerically, we have observed convergence of order At -+ A2+ H3 for certain test problems
[Dawson and Dupont, 90]. This rate can be proven in one space dimension, and for certain
types of discretizations in rectangular geometry. In general, however, we do not know how
to improve the estimate given in Theorem 2.1.

EXPLICIT/IMPLICIT DOMAIN DECOMPOSITION PROCEDURE 389

3. Numerical results. We now present some numerical results for the scheme de-
scribed in Section 2. The algorithm has been implemented on an Intel iPSC/860 Hyper-
cube. The experiments described below were performed on a 32 processor machine located
at the Center for Research in Parallel Computation at Rice University.

We will compare domain decomposition solutions and a fully implicit Galerkin finite
element solution (no domain decomposition) for three test problems:

Test Problem 1:

us — Au =0,

v%(z,y) = cos(nz) cos(7y),
du

[—9”—&; = {.

This problem has the solution u(z,y,t) = =27 tu®(z, y).
Test Problem 2:

Uy — A ((1 + .’L‘)VU) = f’
u’(z,y) = cos(rz) cos(ry),
ou

~— =0,

(97),9

where f is chosen so that the solution u(z,y,t) = e~2" tu0(z, y).
Test Problem 3:

u — V- (01(1 + e*e¥)Vu) = f,

u%(z,y) = cos(rz) cos(Ty),
v _y

3n9

where f is again chosen so that the solution u(z,y,t) = e~ 2714z,). ’

The underlying discretization is an 80 x 80 uniform grid, # = .10, At = .0025, and
T = .10. On each subdomain, U™ lies in the space of continuous, piecewise bilinear functions,
and in the operator B, ¢ is constructed from ¢;.

As seen in (6), on each subdomain an implicit method is used. Thus, a linear algebraic
system of equations must be solved at each time step on each subdomain. We have used
a preconditioned conjugate gradient procedure for solving this system, where the precondi-
tioner consists of simply scaling each row by its diagonal entry. This method was chosen for
convenience; clearly any reasonable linear algebraic solver may be applied to the subdomain
problems.

In the tables below, we compare fully implicit Galerkin solutions with various domain
decomposition solutions. The notation p x g refers to a decomposition of £ into p- ¢
subdomains, where the subdomains are rectangular regions constructed by dividing Q into
p uniform subdomains in the z direction and ¢ uniform subdomains in the y direction.
When p = ¢ = 1, this represents the fully implicit Galerkin solution. A decomposition into
? - q subdomains means p- ¢ processors were used to generate the solution. Thus p-¢ < 32
for the machine used here.

In Table 1, we give clock time and number of conjugate gradient iterations for various
domain decompositions applied to Problem 1. The column labeled CGI represents the av-
erage number of conjugate gradient iterations needed to “solve” the linear algebraic system
of equations at each time step. By “solve” we mean reduce the residual below 1075, When

390 DawsonN

Decomposition Clock Time (sec) CGI

1x1 48.709 5

2x1 106.650 41

2x2 55.010 48

4x2 27.819 47

4x4 10.642 37
TABLE 1

Table 1: Results for Test Problem 1

Decomposition Clock time (sec) CGI LZ error

1x1 438.698 61 |225+1073

2x1 174.379 41 | 1.74%1073

2x2 105.720 63 | 1.31x1073

4x2 51.335 58 | 8.51%107*

4x4 22.496 46 | 5.87%10~¢

8x4 10.459 38 | 1.07%10-3
TABLE 2

Results for Test Problem 2

multiple subdomains are used, the number CGI represents the maximum average over all
of the subdomains. As can be seen in Table 1, the fully implicit method converges in only
five conjugate gradient iterations per time step for Test Problem 1. This seems to be due
to the fact that the problem is homogeneous and a = 1. The domain decomposition proce-
dure introduces nonhomogeneous boundary data into the system and hence the number of
conjugate gradient iterations needed to converge at each time step is substantially larger.
Comparing clock times for the domain decomposition solutions generated on 2, 4, 8, and 16
processors, We note that as the number of processors is doubled, a speed-up of essentially
a factor of two is obtained. This factor increases as we go from 8 to 16 processors, because
CGI decreases, probably due ta the smaller problem size,

Test Problems 2 and 3 represent more difficult problems, due to the variable coefficient
and nonzero source term. Results for these problems are given in Tables 2 and 3, respec-
tively. In these tables we also compare the L? error, |ju — U}}, for each discretization at final
time T = .10. It is interesting to note that for both problems, the domain decomposition
solutions are more accurate than the fully implicit solution. Comparing clack times for the
different decompositions, we note that domain decomposition with 2 processors requires less
than half the clock time of the fully implicit scheme for both problems. In fact, in each case
a speed-up factor of near N is obtained when comparing domain decomposition with N
processors to the fully implicit case, and in some cases, the speed-up factor is greater than
N. In particular, the factor is 41.7 for 32 processors in Problem 2, and 35 for 32 processors

EXPLICIT/IMPLICIT DOMAIN DECOMPOSITION PROCEDURE 391

Decomposition Clock time (sec) CGI L? error

1x1 596.931 46 | 8.40%10~3

2x1 293.157 45 |8.18%1073

2x2 140.894 43 | 8.00«1073

4x2 73.169 42 | 7.81%1073

4x4 35.681 39 | 7.66x1073

4x8 17.094 32 | 7.34%1073
TABLE 3

Results for Test Problem 8

in Problem 3. Thus, we are obtaining better than linear speed-up based on this type of
comparison.

It is clear that the timings given in Tables 1-3 depend strongly on the particular method
used to solve the linear algebraic systems which arise at each time step, If we had used a
direct method to solve these systems, it is expected that near linear spced-up would have
been obtained in all cases. Thus, the timing comparisons between domain decomposition
and fully implicit Galerkin for Problem 1 would likely have been more favorable, but the
“superlinear” speed-up seen in Problems 2 and 3 would not have occurred. If the subdomain
problems are large, however, it is generally preferable to use an iterative solver rather
than a direct solver, and conjugate gradient procedures such as the one used here are
often employed. Therefore, the consequences of using iterative linear solvers to solve the
subdomain problems should be examined.

As noted above, the domain decomposition procedure gives L? errors which compare
favorably to the errors for the fully implicit solutions for Test Problems 2 and 3. In the
domain decomposition method we are possibly committing substantial errors in calculating
fluxes at the interfaces between subdomains; therefore, it is of interest to examine how
this error effects the spatial distribution of the error in the solution. For this study, we
consider Test Problem 1 and apply a 1x2 decomposition. In Figure 1, the error function
e(z,y,t) = |U(z,y,t) — u(z,y,t)] at time ¢ = .005 is contoured. The function e has been
scaled so that the contour values lie between zero and one. In these runs, a uniform 40 x 40
grid was used, At = .0025, and H = .10. Thus, Figure 1 represents the error after two time
steps. As can be seen in the figure, the maximum errors do occur in a neighborhood of the
interface, indicating that the errors in the interface flux are polluting the solution. In Figure
2, we plot the error after ten time steps, e(z,y,.05). Examining this figure we see that there
are still substantial errors near the interface; however, the error is more evenly distributed
and the maximum errors are actually located in the corners of the domain. A similar error
distribution is seen for the fully implicit method. In Figure 3, we plot ez, y,.05) for the fully
implicit Galerkin scheme applied on the same mesh. The figure indicates that the maximum
errors for this scheme are also located in the corners of the domain. In summary, it appears
that for this test problem, as the simulation proceeds, the interface errors dissipate and the
domain decomposition solution behaves very similarly to the fully implicit solution.

4. Conclusions. In conclusion, it should be noted that much numerical testing on the
method described here remains to be done. The results obtained so far are encouraging,
however, and the method shows promise for solving large-scale problems in parallel.

392 DAwsoON

MINIMUM
0.00

075
8
<
>

025

MAXIMUM
H H 1.00
% 035 05

X-AXIS

FiG. 1. Contour plot of error in domain decomposition solution at t = .005

Y-AXIS

X-AXIS

Fi1G. 2. Contour plot of error in domain decomposition solution at ¢ = .005

EXPLICIT/IMPLICIT DOMAIN DECOMPOSITION PROCEDURE 393

Y-AXIS

o
X-AXIS

F1G. 3. Contour plot of errvor in fully implicit solution at t = .005

REFERENCES

Dawson, C. N. and T. F. Dupont, An ezplicit/implicit, conservative, Galerkin domain
decomposition procedure for parabolic equations, Rice Technical Report TR90-26,
Dept. of Mathematical Sciences, Rice University, and to appear in Math. Comp.

