CHAPTER 4

The Schwarz Algorithm and Multilevel Decomposition
Iterative Techniques for Mixed Finite Element Methods

Richard E. Ewing*
Junping Wangt

ABSTRACT. The Schwarz alternating algorithm [18] and the multilevel decomposition iterative method are presented
in this paper for mixed finite element methods for second-order elliptic equations. Convergence estimates similar to
{3,4,20] are established. Some numerical results illustrate the efficiency of our methods.

1. Introduction. Our object in this paper is to propose and study the use of the Schwarz alter-
nating algorithm and some multilevel decomposition iterative techniques in the mixed finite element
method for second-order elliptic equations. For simplicity, we take as our model the homogeneous
Neumann boundary value problem. The weak form of the problem seeks (u;p) € Ho(div; Q) x L2(Q)
such that

(1.1) (cu,v) - (V '”’p) = 01 vE v;

(V- u,w)=(f,w), we W,

where Q is a polygonal domain in R?, and u = —aVp is the flux variable, The function a(z) = ¢~ (%)
is the coefficient of the problem, which is assumed symmetric and positive definite. For simplicity,
we let V = Ho(div; Q) and W = L*(Q). The mixed finite element method for (1.1) seeks (ws;pn)
from V* x W, a mixed finite element space associated with a prescribed triangulation 73, satisfying

(cun,v) —(V-v,p) = 0, v €V,
(V’uh>w):(f:w)) wEWh‘

Many physical problems, for example petroleum reservoir simulation, modeling of ground-water
contamination, elasticity problerns, and seismic exploration, involve the need for very accurate deter-
mination of the flux variable. Very accurate approximations of the flux can be achieved through the
use of mixed finite element methods, particularly with discontinuous coefficients a(x), since the flux
is introduced as an independent variable in the method. However, mixed finite element methods lead
to saddle-point problems whose numerical solution has been quite difficult. Thus, fast and efficient
algorithms for solving the discretized problem are needed for the application of mixed methods.

Here we report on some recent work on a solution method for (1.2). Details of the results
can be found in [8,9]. We briefly describe mixed finite element methods in §2 and describe the
Schwarz alternating algorithm and the convergence estimates in §3. In §4, we introduce a multilevel
decomposition iterative method for (1.2) based on the natural multilevel structure of the mixed
finite element space. We eliminate the pressure p;, from the saddle-point problem (1.2) by seeking a
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discrete flux u* € V* whose divergence gives rise to the divergence of u;. We then apply product
algorithms (cf. [3,19,20]) to the reduced problem, which is symmetric and positive definite for the
flux variable only. Numerical illustrations are presented in §5.

2. Mixed finite element methods. We outline two families of mixed finite element spaces, one
on triangles and one on rectangles:

RT Triangular Elements: Let = (2,y) be the space variable. The RT (Raviart-Thomas)
space [17] of index j on the triangle K for the flux is defined by V*(K) = P;(K) ® =F;(X),
where f",(K ) denotes homogeneous polynomials of degree j on K. The corresponding pressure
space is W*(K) = P;(K).

BDFM Elements: The BDFM (Brezzi-Douglas-Fortin-Marini) spaces (cf. [6]) are modifica-
tions of the rectangular RT spaces. The space of index j for the flux variable is defined by
VR(K) = P{(K)\{/} x Pj(K)\{z'}; the corresponding space for the pressure is defined by
Wh(K) = P;_1(X), where P;(K) denotes the polynomials of total degree no larger than .

It is known that these two families are stable, which means that the BabuSka-Brezzi stability con-
dition is satisfied. For a more detailed discussion of the mixed method, see [1,5,6,7,12,13,17].

The iterative methods proposed in this paper are applied to a positive definite problem defined
on a subspace M of V*. The subspace H” consists of those discrete fluxes that are divergence free;
ie., HF = {v EVh, V.v= 0} . Thus, any flux v € H" can be expressed as the curl of a stream
function ¢ € H(Q2). Furthermore, the stream function ¢ is uniquely determined in HE(£2), since
the flux has zero boundary values in the normal direction to Q. Denote by 8" the set of stream
functions with vanishing boundary value. The space S* shall be termed the stream-function space.
Note that any stream function ¥ is a continuous piecewise polynomial. Thus, §* is a finite element
space of CP%-piecewise polynomials associated with 7.

The stream-function space for the families mentioned above can be characterized as follows.

Theorem 2.1. Let S* denote the stream-function space. Then,

(1) for the RT triangular element of indez j > 0, S® = {¢ € C°(Q); |k € Pj+1(K), K € Tn};

(2) for the BDFM element of indez j, S* = {¢ € C°(Q); ¢lx € Pija(F)\{z/ 1,47}, K € Th.}.

Proof. We illustrate the proof for the RT triangular elements only; the analysis for the BDFM is

similar. Let S* be defined as in the theorem. It is obvious that curl ¢ is a discrete flux in the RT
space of index j. Further, it is divergence free. Thus, S is a subspace of the stream-function space
for the RT element of index j. Conversely, for any v € H?, let ¢ € H}(2) be the stream function of
v. Since v is divergence free, we know that v|x € P;(K)? on any K € 7). Thus, ¢ is a continuous
piecewise polynomial of order j + 1, which implies ¢ € Sh.

3. Schwarz alternating algorithm. Assume that we have an overlapping domain decomposition
for Q which aligns with 7; on the boundary; i.e., there exist subdomains Q; C @, for i = 1,---,J,
such that Q = U{_,Q;. Further, for any element K € 75 and index i, K either is entirely in €; or
has an empty intersection with Q;. Thus, the restriction of 75, on ; provides a regularly defined
triangulation 7; for ©;. Let V# x W} be the corresponding finite element space associated with 7;.
Analogously, set H? = {v € V}; V-v =0}

The first step in the Schwarz alternating method involves seeking a discrete flux v* € V! such
that

(3.1) V.ut = ft

where f* € W is the standard L? projection of f on W*. To obtain such a flux u*, let 7o = {K. e
be a ‘coarse’ triangulation of Q! whose elements align with those of 7, on the boundary. Hence, 7,
can be regarded as a refinement of 7. As before, let Y x W}* be the finite element space associated
with the triangulation Kj n, which is the restriction of 7; on K;. Let f% be the L2 projection of f LT
the space W, and f* € W} be the restriction of f* — f} on K;. It follows that f* = AR, 1
Schwarz Algorithm (Part 1): _

(1) For each i,0 < i < L, find (u};p}) € YV} x W} such that

(Eu;>v)_‘(v'”7p:)=07 ‘DE\}!‘,

32 (Vouhw) = (Fw),  we W
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where € is an arbitrary positive function on Q.

(2) Set u* = 3% ul.
Remark 3.1. As indicated by (3.2), the coefficient & may differ from ¢. This is so because we only
care to have some discrete flux satisfying the second equation of (3.2). Therefore, one may, for
instance, take & = 1 or &= ¢ for the sake of convenience in the real computation.

Theorem 3.1. Let the discrete fluz u* be obtained as above. Then, V - u* = f5.

The proof of Theorem 3.1 is straightforwad from the definition of u* combined with (3.2) and
the decomposition for f. Now the saddle-point problem (1.2) can be reduced to a positive definite
problem for the flux by setting 4" = up, — u* and then seeking @* € H* satisfying

(3.3) (cit®, v) = —(cu*,v), v e H.
Let P; be the projection operator from H” to ’Hf{ defined by

(34) (c Pgv)=(cév), EeHM, venH].

Assume, here and throughout this paper, that w is a real number in {0,2).

Schwarz Algorithm-1 (Part 2): Given @} € H*, an approximation to (3.4), we seek the next
approximate solution @%,, € H? as follows:

(1) Let Zg =@}, and define Z; € H*, fori=1,... ,J, by Z = Zi_, +wPi(a* — Z;_1).

(2) Set 4k, = 7.

For the general substructure {€;}/_, used in the Schwarz algorithm-1 (Part 2), we establish a
convergence estimate as in [3,20]. The result is stated in Theorem 3.3, below. Also, we consider the
Schwarz method for a ‘4wo-level’ domain decomposition. Namely, if one introduces a coarse level in
the Schwarz algorithm, the convergence rate will be improved dramatically. This ‘two-level’ Schwarz
method can be described as follows. Starting from a ‘coarse’ triangulation 7y of mesh size hg, which
could be the one that was used to construct u* in Part 1 (for instance), we construct subdomains
{; by expanding the element K; € 7 by a prescribed distance d = O{(hg); the part outside £ will
be omitted. It follows that {Q;}{., forms an overlapping domain decomposition of . The Schwarz
algorithm-1 (Part 2) can be applied to this substructure and, as in the case for second-order elliptic
equations, yields a convergence rate bounded by 1 — O(h2) (see Theorem 3.3). From the multigrid
methf)d, we make use of the ‘coarse’ triangulation 75. Let VE x W§ be the finite element space
associated with 75 and H} be a subspace of VE consisting of divergence free flux elements.

Schwarz Algorithm-2 (Part 2): Given @} € #", an approximate solution from (3.3), we seek
the next approximate solution @4, € H* as follows:

gg ge’i: .?;1 = ﬁé‘:, and define Z; € H*, for i = 0,1,--- ,J, by Z; = Z;_, +wP(a* - Z;1).
et 4k, = 2;.

) Thé:\ S:chwatz Algorithm (Part 2) involves some projection operator P; onto the subspace HPE.
Since 1t is generally very hard to find a nodal basis for H}E, a direct computation of P;v is almost
1mpo§sxble in practice. We propose two approaches which lead to an easy determination of Fv. The
first is based on the stream-function space. Let S5 be the corresponding stream-function space over
§2;. Denote by &(-,.) the bilinear form defined by @(¢,9) = (c curl ¢, curl ¢) for all ¢, 1 € SF.

Theorem 3.2. For any £ € H*, let y; € SP be defined by

(3.5) i, P)=(c&, curl ), sk
Then Pi§ = curl ;.

Remark 3.2. Theorem 3.2 shows that the action P;

€ can be calculated th ht i
second-order elliptic problem in the standard Gale o e s gputation of 2

rkin finite element space. This idea can obviously
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be applied to the computation of #*. Actually, the same reasoning shows that @* = curl 5 for
some 7 € S” defined by

(36) " a(n,4) = ~(cu”, curl ¥), S,

where, as before, @(n,¢) = (c curl 9, curl ¥). Equation (3.6) is clearly the standard Galerkin
method for a second-order elliptic equation. Thus, the reduced mixed finite element method is
equivalent to a standard Galerkin method and all the existing results in domain decomposition and
preconditioning techniques are applicable. However, (3.5) is different from the standard Galerkin
method applied directly to (1.1) for the pressure only. The elliptic problem (3.5) is equivalent to
the mixed finite element method for (1.1), and hence provides a more accurate approximate flux,
especially for problems with discontinuous coefficient a(z).

Remark 3.3. The technique developed in this section can be extended to problems with mixed
Dirichlet-Neumann boundary values for the second-order elliptic equation. See [8,9] for details.

The second approach to the computation of P;€, as suggested in [16], can be obtained by solving
a saddle-point problem on ;. Let (£2;0}) € VI x W} be defined such that

(cf?,v)—(v-v,ﬂf’)z(cf,v), v eV,

Then, it is obvious that £} = P.£.

Theorem 3.3. There ezisis a constant C such that the convergence of the Schwarz algorithm-1
(Part 2) is bounded by

(3.8) 70 =1-w(2-w)d*/(CT).

We see from (3.8) that the convergence rate for the Schwarz algorithm-1 (Part 2} has an upper
bound dependent upon two parameters d and J; d characterizes the size of the overlapped subdomain
and J is the number of subdomains. We emphasize that, in (3.8), J could be replaced by Ny
defined by Ny = meas))( N, where N denotes the number of subdomains containing z € Q. The

T

number N is apparently bounded from above by J. However, in some important applications, the
number Ny could be independent of the number of subdomains J. We consider, for example, the
substructure {;}{_, obtained by expanding each element of the coarse level 7y by the prescribed
distance d = O(hg), which was used to define the Schwarz algorithm-2 (Part 2). If is clear that the
number Ny is a constant independent of J. However, as a small number, the parameter d, which
is proportional to hg, contributes a negative effect to the convergence. As in the case for second-
order elliptic problem, the use of the coarse level can balance this negative effect and yield uniform
convergence for the method. The result is presented as follows.

Theorem 3.4. Let {Qg};’=1 be the substructure of Q used 1o define the Schwarz algorz't‘hr{z-,?. Then
there exists a constant C such that the convergence of the Schwarz algorithm-2 (Part 2) is bounded
byy,=1- ______lw(zc-w .

4. Maultilevel decomposition algorithms. In this section we consider multilevel decomposition
techniques applied to the mixed finite element method (1.2). To begin, let 7o be an intentionally
coarse initial triangulation of Q. For i = 1,--.,J, let T; be the triangulation obtained by breaking
every triangle {or rectangle) of 7;_; into four subtriangles (or subrectangles) by connecting the mid-
points of each edge (or of opposite edges). Denote also by 73 = 77 the finest triangulation of Q.
The triangles of the triangulation % are called level ¢ elements. The vertices of level 7 elements are
called level 7 nodes.

Let VP x W be the finite element space associated with 7;. For any f b e Wh, let
(4.1) =" -Qk s,

for£=0,...,J, where QP is the standard L? projection operator onto the space W} and Q*, = 0.
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Lemma 4.1. Let f* be as above. Then f* = Y7o fP. Furthermore, the functions f, for i =
1,.++,J, have vanishing mean values on each element of level 1 — 1.

As in the Schwarz alternating algorithm, we first find a discrete flux whose divergence is . Our
method is based on Lemma 4.1. Let M2% = V? and M? be the subspace of V} consisting of those
fluxes whose boundary values in the normal component of the boundary of level i — 1 elements are
zero; L.e.,

(4.2) Mi={veV} v.vor=0, ondT and T €Ti1},

fori=1,.--,J. The corresponding pressure spaces are defined by taking Wk = W} and
(4.3) Wk={we Wi":/ wdz =0, forall T € T;_1}
T

fori=1,--+,J. It is clear from Lemma 4.1 that f} € Wk,

Multilevel Decomposition Algorithm (MDA) (Part 1): Let f* be the L? projection of the
right-hand side fanction f of (1.1) in W", which is decomposed as in Lemma 4.1.
(1) For i =0,--- ,J, solve u? x 8% € M} x W} by

(tul,v) — (V- v,6})=0, veMmt,

44 -
( ) (V-u,{‘,w):(f,-h,w), wEVV?,
where & is an arbitrarvy positive function defined on Q.

(2) Set w* = Y07_, ul.

Lemma 4.2. Let u* be oblained by the algorithm above. Then V -u* = f7,

Remark 4.1. The solution of (4.4) can be obtained by solving some local problems. To see this, we
note that the space M} is the direct sum of subspaces defined on disjoint subdomains 7, where
T, are elements of level i — 1. Thus, the problem (4.4) is quivalent to subproblems restricted to the
subdomain 7, (with vanishing boundary value in the normal direction). The only exception is the
solution of ull x 82 which is defined on the coarse level and, therefore, can not be split into some
local problems. However, the coarse-level problem does not cost much to compute.

Remark 4.2. The MDA (Part 1) provides a way to find the desired u* based on the natural mul-
tilevel decomposition (4.1) for f*. In practice, there are other methods available. The numerical
experiments in §5 use a different approach to construct «* for rectangular domains.

Similarly to (3.3), we can utilize #* to reduce the saddle-point problem (1.2) to a positive definite
problem (3.3), where u;, = 4" + u*. Note that the problem (3.3) can be solved as the standard
Galerkin method by employing the stream-function spaces (see Remark 3.1). However, we would like
to study this problem using is present form. Following the idea in the Schwarz algorithm, we propose
two iterative algorithms solving (3.6) based on a certain multilevel structures of the finite element
space W*. The method is similar to the multilevel decomposition iterative method proposed in [20,
21] for the Galerkin method. In general, the method can be regarded as an extension of the standard
multigrid method. The idea here is to replace the smoothing (for instance, the Gauss-Seidel and

Jacobi smoothings} in the multigrid method by the Schwarsz alternating method or additive Schwarz
for each level.

First, let A} be the set of level { nodes fori = 0,1,---, 7. Associated with each node ;¢ € N let
;& be the subdomain of  consisting of level i elements having #;; as a common vertex. {Qi:}ie;
forms an overlapping decomposition of 2, where m; is the number of level i nodes. Let Vi,e X Wi i be
the corresponding finite element space of level i defined on Q; & with the natural partition induced

from 7;. Accordingly, let H; ;. be the divergence-free subspace of V; ;. The second part of the MDA
can then be stated as follows. ’

Mul?.ilevel Decomposition Algorithm-1 (MDA-1) (Part 2): Given a® € HP?, an approximate
solution of (3.3), we seek the next approximate solution @2 +1 € H as follows:
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(1) Define Zo € H" by Zo = @l + wP(ah — al).

(2 Fori=1,---,J,let Yo=Zi_1 and Vi = Y31 + wP; p(8* — Y1),k = 1,--- ,m;, where P,
is the projection operator onto H; ; with respect to the (-, -)o = (¢ -,-) inner product. Then, we let
Z; =Ym,

(3) Set ﬁz_'_l =Zj.

Remark 4.3. The projection operator P; . is defined locally on each (macro-element) €; ;. In prac-
tice, we have to solve a local problem on §2;; to determine this operator; the computation of such
local problems is cheap. -As in the Schwarz algorithm, the operator P;; can be obtained by solving
either a saddle-point problem (3.7) or an elliptic problem (3.5); they are small problems associated
with macro-elements.

Since the Schwarz alternating method is an analogue of the SOR iterative method for matrix
computation (cf. [3,19,20]), we see that the MDA-1 (Part 2) is actually an analogue of the multigrid
algorithm based on the SOR smoothing for each level. Due to the connection between the SOR
method and the Schwarz alternating method (cf. [3, 20]), we propose to modify MDA-1 (Part 2)
by using the additive Schwarz {cf. [10]) on each level i. Let R; = ¥y, P ; be a symmetric and
nonnegative operator on H* with respect to the (-,-). = (¢ -,-) inner product. Let A; be the largest
eigenvalue of R; which is bounded by a constant C uniformly in . Set T; = A{lR;.

Multilevel Decomposition Algorithm-2 (MDA-2) (Part 2): Given 4! € 7?, an approximate
solution of (3.3), we seek the next approximate solution @2, € H"* as follows:

(1) Define Zy € H" by Zy = 4l +wPs(a® — ak).

(2) Fori=1,---,J, define Z; by Z; = Z;_1 + wTi(&" — Z;_1).

(3) Setal,, =2;.

Theorem 4.2. There erists a constant C such that the convergence of the MDA-1 and MDA-2
(Part 2) are bounded by

w(2—w).

(4.5) y2=1- rebi

The estimate (4.5) is established without any regularity assumption beyond H(div, () necessary to
define the weak form. However, the estimates are level dependent, though the dependence is very
weak. In [9] we have also proved a uniform convergence for the MDAs if more regularity is assumed.
The result follows:

Theorem 4.3. Assume that the H? regularity is satisfied for the problem defined by the bilinear
form &(.,). Then, there exists a constant C such that the convergence of the MDA-2 (Part 2) is

bounded by v4 =1 — 2252

5. Numerical experiments. In this section, we present some numerical experiments to illustrate
our theory. For simplicity, we consider (1.2) with ¢ = 1. The domain Q = (0,1) x (0, 1) is the unit
square. The homogeneous Neumann boundary condition is imposed on 8Q. The right-hand side
function is f(z,y) = 272 coszcosy, (z,y) € Q, and the exact solution is p(z,y) = coszcosy. It is
clear from the definition of the flux that w = (uy,u;), where u; = 7wsinz cosy and us = Tcoszsiny.

The RT space of the lowest order is used in the computation. We began with a uniform 2 x 2
grid. The code was used to refine each coarse element (square) into four congruent small squares,
obtaining a fine mesh with (2" +1)? nodal points. The number J is said to be the number of levels
of the refinement. In the MDA (Part 1), the code did not quite follow the idea presented in the
paper because of the use of a different decomposition (the procedure suggested in the paper is more
applicable to adaptively refined meshes). More precisely, the discrete flux u* satisfying (3.1) was
obtained according to the following decomposition for Q. Let 7, be the fine mesh of £. Define Ty
to be the collection of 27 ‘thin’ strips (see Figure 1). Bach element (strip) has 2 partition inherited
from 7;,. Thus, we can use the MDA (Part 1) to construct the desired discrete flux «”.
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srip #|7

stirip #|2

Figure 1. Illustration of an 8 x 8 rectangular partition
and decomposition.

After we had u*, we applied the MDA (Part 2) to approximate the new flux #". We summarize
the numerical result obtained by using MDA-1 (Part 2) in Tables 5,1-5.2, from which we see that
the relaxation parameter w can speed up the convergence of the algorithm.

The number of accurate digits is defined by

- lul — ullo
Digits = — log (——-— ,
llello
where || - ||o is the standard L? norm and u? = @l + u* is the approximate solution of the finite
element approximation u”*.

The results in Tables 5.3-5.4 are obtained by using MDA-2 with different choices of ;. We found
that the best choice for this number is 1.

The average rate of convergence of the MDAs is presented in Table 5.5. We emphasize that,
ccording to our theory, the rate of convergence of the MDAs is independent of the number of levels
Ex our computational example. This was verified by the numbers in the Table as well.

Table 5.1
Convergence of the MDA withw=1

Iteration 1 2 3 4 5 6 | 7 8 9

Digits (J = 5) 0.71 144 2.20 2.96 3.36 3.39 3.40
Digits (J = 6) 0.71 144 2.19 2.98 3.70 3.97 4.00
Digits (J=7) 0.71 1.44 2.19 2.98 3.75 4.33 4.56 - -

Digits (J = 8) 0.71 144 2.19 2.97 3.76 4.40 4.89 5.15 5.20

Table 5.2
Convergence of the MDA-1 with w = 1.2

Tteration 1 2 3 4 5 6 7 8 9

Digits {J = 5) 0.95 197 | 271 322 | 337 | 339 | 340 - -
Digits {J = 6) 0.95 1.96 2.76 341 3.84 3.98 4.00 - -
Digits {J = 7) 0.95 195 | 298 | 345 4.01 447 | 459 4.60 -
Digits (J=8) | 095 } 195 | 2.78 | 346 | 403 | 464 | 512 5.20 -

Table 5.3
Convergence of the MDA-2 with A,.‘I =1

iteration 1 2 3 4 5 ] 7

Digits {(J=5) | 061 123 | 184 247 | 305 | 335 | 3.39
Digits (J=6) | 061 1.22 1.84 | 247 309 | 367 | 396 | 399 | 400
Digits (J =7} 0.61 1.22 1.84 2.46 3.09 372 4.30 4.57 4.60
Digits (J =8} | 661 122 184 | 246 309 1 373 | 436 | 494 5.18 5.20

Table 5.4
Convergence of the MDA-2 with ,\‘Tl =.9

Tteration 1] 7 8 9 10 11 12 13 ] 14 15

Digits (J =8} | 288 | 322 | 336 | 339 | 340 - - - - -
Digits (J=6) | 290 | 333 | 370 | 392 | 398 400
Digits (J=7) | 290 | 334 | 376 | 414 | 443 456 | 459 | 460 -
Digits (J=8) | 290 { 334 } 377 | 417 | 455 A87 | 508 | 517 | 519 | 5320
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Table 5.5
The average rate of convergence of MDA
5(J=5) §(J=6) | §(J=7) | §(J=8)
MDA-1 (w=1) 0.33 0.27 0.27 0.26
MDA-1 (w = 1.2) 0.33 0.27 0.27 0.22
MDA-2 (A7 =.9) 0.46 0.43 0.44 0.45
MDA-2 (A1 =1) 0.33 0.32 0.31 0.30
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