CHAPTER 21

Two-Level Iterative Refinement Preconditioners

Richard E. Ewing*
Panayot S. Vassilevski*

Abstract. We present a comparative numerical study of the two-level BEPS precon-
ditioner from [6] and two-level, hierarchical basis, local refined preconditioners for solving
second-order elliptic equations discretized on two-level patched grids. The latter precon-
ditioners allow inexact subgrid solvers.

1. Introduction and Preliminaries. Let { be a given two-dimensional (2-D)
polygon and let I')y be a given part of the boundary 8 on which Neumann boundary
conditions are imposed. We assume that the Dirichlet portion, I'p = Q\I'y, is a non-
trivial part of 8. We denote the standard L2-based Sobolev spaces on by WZJ ().

We consider the second-order boundary value problem in a variational setting:

Given f € Ly(®) and gy € W, 7(Tx), find u € W2 (R) such that,
a
o(08) = [ Sobis(e) gy gande = [ oo+ [ owoar

for all ¢ € W} (Q),¢ =0 on I'p = 8Q\I'y, and
©v=0 on I'p.

The bounded measurable coefficients ki ;(z) define a symmetric matrix that is assumed
to be uniformly positive definite for z € Q.

We discretize the above boundary value problem on an initial coarse mesh @. For
definiteness, we consider the case of triangular grids. The finite element discretization
space V C WI(Q) is assumed to be spanned by piece-wise linear functions that are con-
tinuous in & and vanish on I'p. The nodes (vertices of triangles that do not lie on I'p)
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define the initial (coarse) grid @. We denote by h the discretization parameter on &.
Thediscrete finite element problem reads:
Find u; € V such that for all ¢ € V we have

a(ug, d) = /n Fode + /r o

Let {&; n be a standard nodal basis in V. Then we can compute the correspondin
=1 &

A= {a (lz’j’ é’) }:j:l

and formulate the finite element problem as a linear algebraic system,

stiffness matrix A,

Ak =b,
where X is the coeflicient vector of uj;, expanded in terms of the basis {gz,}n L and
1=

n
b= ([ bidst [ anbiar) .
Q Ty =1

In general, we may not be satisfied by the solution u; on the coarse grid &. Thus, after
a posteriori analysis, one may decide to refine the mesh. This process can be successively
repeated. In practice, the refinement can take place only in certain subregions, where the
currently computed approximate solution has a large gradient.

We study the following model situation. Let Q3 C Q be a subregion where we in-
troduce a finer mesh w;. We assume that Q; is covered by coarse-grid elements. The
refinement is done by subdividing any coarse-grid element in 2; into a fixed number of
congruent ones. At the interfaces that arise between the refined and unrefined elements,
we have to introduce so-called “slave” nodes. The values of the functions at these nodes
in the corresponding fine finite element space V DO V are obtained by interpolation (linear
interpolation between the vertices of the adjacent coarse-grid element that is not refined).
This means that the values at these nodes are not degrees of freedom. We denote by w
the finer grid (called also composite grid) obtained in this manner. We have w; = {3 Nw;
that is, w; consists of all the nodes (old and added in the refinement) in Q. The fine-grid
space can also be defined as follows,

V=V4+v,

where V‘()l) is the standard finite element space of piece-wise linear functions in ; that
vanish on the interfaces between (1 and the unrefined part of Q. Let {¢;}*; be the
standard nodal basis in V. Then one can consider the following hierarchical basis functions

in'V: 5
- n -~
{q&;} =1 {didiza U {¢"}£=1 ’
We compute the stiffness matrix with Tespect to the hierarchical basis, obtaining
~ ~ n
A= {a (qu’ ¢‘) }i,j=1 :

We note that, in the computation, the hierarchical basis stiffness matrices are used only
implicitly (¢f. Yserentant [16] or Bank, Dupont, and Yserentant [5]).
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Our basic assumption is the following: Problems on the standard, say uniform, grids
can be solved efficiently; for example, there exists a standard software code for such so-
lution processes. In our case, such grids will be &, w;, and any grid obtained by uniform
refinement of any of their regular parts. For example, we may think of rectangular sub-
grids.

Now we are in position to formulate a number of preconditioners. To do this, we
partition the composite-grid matrix into the following natural hierarchical two-by-two

block form:
A= Ay Ap }w\&:
An Ay | Yo 7

The blocks are readily computed as follows:

An = {aldi, )} jmnprs
{a' ("51 ’ ¢‘) } 1<j<A, fit1<i<n’

{o@d)),n=4

That is, Agy is nothing but /1, the coarse-grid matrix. We also need the stiffness matrix

A = {ag1 (@,&i)} , that is, the stiffness matrix in the subregion (; using the
z5,@i €N

finite element space Vf(,l) of functions that vanish on the interfaces between () and the
unrefined part of Q. We similarly have,

A11 A(l) }wl\d')l
A = 12 ~ .
' (A&? A5 ) ¥

Ajp

Az

Here &4 and wy are the coarse and fine grids in Q, respectively. Note that A; has the
same first block on its diagonal as A. We also need the following Schur complement Wi,

Wi = A5 - 45457 4.

‘We emphasize that one can solve problems with W; based on solvers for 4; on the regular
grid wy. Alternatively, we can use a coarse-grid solver in the subregion 3; and then
interpolate the solution on the fine grid in Q3. In practice, this will depend on the data
structure used for storing the matrices in order to take advantage of possible vectorization
properties of the corresponding solver.

We define:

PRECONDITIONER 1.

C = W1 A}g I~ (] }w\i&
0 A A4y T }&
PRECONDITIONER 2.

Do 0 \}\@
0 AJ} -
It is clear that both preconditioners incorporate solvers on regular grids 19 and wi. The
second preconditioner, which is block-diagonal, gives rise to the so-called AFAC method
studied in McCormick and Quinlan [14]. In a sense, all these preconditioners are variations
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of the two-level hierarchical preconditioners introduced in the paper of Bank and Dupont
[4] and studied further in Axelsson and Gustafsson [1] (see also Maitre and Musy [10]).
Here we emphasize their modification and application to the local refinement precondi-
tioning techniques.

For the BEPS method, proposed in Bramble, Ewing, Pasciak, and Schatz [6}, which
is also based on solvers utilized only on the regular grids, the solution staris on the
finer grid w;, then a coarse-grid correction is performed, and the preconditioning step is
completed by one more fine-grid solver. In the related FAC-method of McCormick [12] and
McCormick and Thomas [14] (see also McCormick [13] and Mandel and McCormick [11]),
the last fine-grid solution step is replaced by interpolation. This approach allows inexact
coarse-grid solvers (see Ewing, Lazarov, and Vassilevski [8]), but the fine grid solvers must
be exact (or must be handled up to h-dependent accuracy), which means that if one solves
these problems by an optimal iterative method, O(log1/h) iterations are required on the
fine grid w;. .

The main goal of the present paper is to demonstrate the performance of the two-grid
preconditioners with approximations to the block Wj, which is of main importance when
we generalize the method for multilevel refinement, versus the BEPS method, [6] (see also
[8]). The numerical results are presented in the next section. A relevant theory for the
hierarchical basis two- and multi-level iterative refinement preconditioners with inexact
subgrid solvers is given in Ewing and Vassilevski [9].

2. Comparative Numerical Experiments. In this section, we compare the per-
formance of the (two-level) BEPS preconditioner from [6] (see also [8]), with the Pre-
conditioners 1 and 2 with inexact solvers on the refined subdomain. The test problems

are
-~V -a(z,y)Vu = f(z,y), (z,9) € 2= (0,1

duf/dn - given on {z =1}, and {y =1},
u — given on {z =0}, and {y = 0}.

‘We use piece-wise linear functions on right-angled triangles for the finite element spaces
V and Vt(,l), where the subdomain in which we introduce finer mesh is

0 ={(z,y):7/8<z<1, 7/8<y<1}.
The test problems correspond to the following diffusion coefficients:
PROBLEM 1: (a smooth coefficient):
a(z,y) =1+ z? + g%
The right-hand side f corresponds to the following exact solution in this case:
w(z,y) = e~ %(z ~ 1)* + (y ~ 1)%
ProBLEM 2. (a discontinuous coefficient):

_ 1, z>15/16 ory > 15/16,
“(2,9) =\ 1000, z < 15/16 and y < 15/16.

The exact solution u in this case is

u(z,y) = (1 - 2)*(1 ~ y)*(z — 15/16)(y - 15/16)/a(x, 3).
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Note that u is almost zero outside the domain (15/16,1] x (15/16,1)].

The initial uniform discretization has mesh sizes h, = 1/16, 1/32, 1/64. In the subdo-
main ©; we introduce a finer mesh with a size b = h./ng, 70 = 2,4, 8.

The preconditioners are:

BEPS PRECONDITIONER: Consider the following domain decomposition block form of A4,

4 P e
A_[Ql Az]}w;'

Then the BEPS preconditioner is defined as follows:

po (A O\ (I AT'P \}u
Q S 0 I }W2 = (:7\(«)1 ’
where § is the Schur complement of the coarse-grid matrix A partitioned into the following

block form: . _
A= An A} =d\we
An Ay )}or=wy
ie., 3 o
§=Ap - AnAj Ass.
For more details we refer to Ewing, Lazarov, and Vassilevski [8]. We only note that to
solve a system with the Schur complement 5, we can use solvers for the coarse-grid matrix,

since
F-1 _ * ~*
A7 = ( * §1 )
0

Then §~1v; = (fi“l N ) . The other preconditioners are Preconditioners 1 and 2
2

from Section 1, modified by inexact fine-grid solvers. We now define an approximation Z1
to the Schur complement W3 of the fine-grid matrix A4;.

The finite element stiffness matrix A; for the subdomain Q; admits a block-tridiagonal
structure if we use a line ordering of the nodes, say, in the vertical direction; i.e., we have

Vii Vi

Vaa Vs V5 0
a=| 0
0 v;z,n—l ‘/nn

Then we use the incomplete block-factorization for block-tridiagonal matsices as proposed
in Axelsson and Polman [2] (see also [7]); i.e., we compute

By = (Y_l - L)(I - YU)7

where —L and —U are the strictly lower and strictly upper block diagonal parts of A1,
respectively. The matrix Y is block diagonal with blocks {Y;}%, that are computed by
the following algorithm. Below, for any matrix X, we denote by X a (2p + 1)-banded

approximation to X. Set Y¥; = (Vﬁl)(p); for i=2,3,...,n compute

Y= [(VI':' - W,i—lyi-lVi-l,e)‘l] ®
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Since the matrices V;; — V;;_1Y;_1V;_1; are kept (2p + 1)-banded, one can compute Y;
based only on the LDU factorization of Vi — Vii-1Yi—1Vi—1,, without any inversion of
matrices. For more details, we refer to Vassilevski [15]; see also Axelsson and Polman [2].

The above block-factored matrix B; gives rise to a vectorizable solution algorithm
since, when applying By 1 to certain vectors, we use only matrix-vector products with the
sparse (banded) blocks ¥;, Vi1, V;iy1, which can be vectorized well. For more details,
we refer to Axelsson and Polman [2] (see also [7] and [15]). In our test we have used the
so-called CHOL[p] approximation for X 1; see [7] and [15].

The product Zj vy, for any vector v; defined on w\@;, is then defined as follows:

-1 1 0 Y& . -
Zyv1= B ( i )w\dvl , restricted to wi\@:.

0 \}an
vy | Jw\e

by the preconditioned conjugate gradient method using B, as a preconditioner. Strictly
speaking, B! is a nonlinear mapping; but as demonstrated in [3], this makes no significant

Bt 0 stands for the approximate solution of the system A;x; =
1 v

difficulty for the performance of the preconditioners C' and D (see below) if By* ( ‘?1 )

. . 0
is an accurate enough solution of the system A;x; = < v ) In our test, we have
1
. . —4 -1 . 0
used a high relative accuracy e1 = 107%, i.e., the B] -norm of the residual w |

Alﬁl_ 1 ‘? to be smaller than ¢;.
1

In our test, we have chosen the halfbandwidth p = 4. Preconditioners 1 and 2 are then
modified as follows using approximate solutions on the wy grid.

PRECONDITIONER 1. (a block two-level Gauss-Seidel preconditioner with inexact fine-grid

solvers):
co| 7 ] I o]
1o A ATAy I | }e T

PRECONDITIONER 2. (a block two-level Jacobi preconditioner with inexact fine-grid
solver):

Zl 0 }w\é
Dz[o A]w :

We solve the linear algebraic problems
Ax=bh,

corresponding to the standard (nodal basis) finite element discretization of problems 1 and
2 above. We use the PCG method with the preconditioners specified above. In the tables
below we show the number of iterations, iter, and average reduction factors, p, defined by

_(E\*
P=\vm)
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where A = rTr and Ag = r3r. Here r and g stand for the current and initial residuals,
respectively. We also show the CPU time in seconds of the solution part of the method.
The initial iterate is chosen to be

x° = B7'b, C'b, or Db

in the corresponding cases. For the hierarchical basis preconditioners, C and D, we trans-
form the corresponding data to the hierarchical basis coefficient vectors (only on the
preconditioning step). The stopping criterion is VrTr < € = 1075. The tests were run on
the Alliant FX/8.

8. Conclusions. From the tests presented we see a very good vectorization of all
preconditioners, with a best performance of the BEPS preconditioner B, both on conver-
gence rate and CPU-time. The two-level Gauss-Seidel preconditioner appeared to give a
number of iterations bounded independently of the mesh ratio h./h. However, the two-
level Jacobi preconditioner showed a certain deterioration when increasing the mesh ratio
he/h. Another observation is that all preconditioners are robust with respect to discon-
tinuous coefficients. Perhaps a more careful implementation of the hierarchical two-level
preconditioners would make their performance more competitive with respect to the BEPS
preconditioner.

Table 1. Iterative Convergence Results for Problem 1

.=1/16
B.E.P.S. Gauss-Seidel Jacobi
he/h || iter | p CPy iter| p CPy CPy

(sec) (sec) lter | p (sec)
2 3 10009 057 5 | 0.010 1.65 12 10.29 1.86
4 4 10.02 0.91 5 (0016 193 15 1037} 291
8 4 10.02 1.36 5 | 0016 258 16 | 036 | 4.70

he =1/32

B.E.PS. Gauss-Seidel Jacobi

. CPU |, CPU | . CPU
he/h || iter | p (sec) iter | p (sec) iter | p (sec)
2 3 | 0.009 1.79 5 | 0.04 5.27 15 | 0.38 7.46
4 4 10.02 2.58 5 |0.05 6.01 19 | 047 | 11.30
8 4 |0.02 4.41 5 1005 846 21 1051 19.90

he=1/64
B.E.P.S. Gauss-Seidel Jacobi
. CPU |l CPU CrPU
he/h | it i
Jh liter| p (sec) iter | p (sec) iter | p (sec)

2 3 1 0.006 6.48 5 1004 2148 14 1 0.37 | 2856
4 3 1001 7.86 5 10.05| 24.05 20 | 049 ] 47.27
8 3 10.01 14,49 5 [005] 34.61 23 | 054 | 90.39
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Table 2. Iterative Convergence Results for Problem 2

he = 1/16
B.E.P.S. Gauss-Seidel Jacobi
. CPU | . CPU CPU
he/R |f it i
[hliter | p (sec) iter | p (sec) iter | p (sec)
2 2 | 0.009 0.42 3 | 0.001 1.12 10 | 0.22 1.53
4 3 |0.007 0.68 3 | 0.003 1.25 12 1 0.28 2.25
8 4 10.014 1.26 3 10.004 1.68 13 | 0.33 3.70
h. =1/32
B.E.P.S. Gauss-Seidel Jacobi
. CPU | . CPU |. CPU
hc/h | iter p (sec) iter o (sec) iter | p (sec)

2 2 | 0.0006 1.30 4 (0020 4.33 14 | 0.37 6.87
4 3 | 0.008 2.02 5 |0.010] 5.8 18 | 0.46 | 10.36
8 3 |0.008 3.31 5 (0014) 7.94 19 | 048 | 16.78

he = 1/64

B.E.P.S. Gauss-Seidel Jacobi

. CPU | . CPU | . CPU

he/h || iter | p (sec) iter | p (sec) iter | p (sec)
2 3 |0.004 6.37 5 1003 20.85 15 | 0.38 | 28.34
4 3 |0.004 7.66 5 10.05| 23.04 || 20 {049 | 43.36
8 3 |0.007} 14.09 5 [0.05| 32.35 24 | 0.55| 81.09
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