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Domain Decomposition Methods using
Modified Basis Functions

V.I. AGOSHKOV

ABSTRACT. The paper investigates domain decomposition algorithms based
on the use of modified basis functions in projective-difference approximation of
problems. We use usual basis functions with support diameters of the order
of the mesh size inside subdomains ([1-5],[9-11]). On subdomain interface we
consider instead basis functions with supports of greater size, which are extended
to subdomains in a harmonic manner.

We consider two boundary-value problems. The first of them is the Dirichlet
problem in a rectangle Q, the second one is a problem with natural boundary
conditions in a “complicated” domain ) C Q, included into §2. In the Dirichlet
problem we introduce modified basis functions and construct a “simple” precon-
ditioner. Then we use the same modified basis functions to solve the problem
with natural boundary conditions. We investigate the properties of the matri-
ces arisen in Galerkin’s approximations and present the convergence results of
domain decomposition algorithms based on iterative processes of minimal cor-
rections and locally optimal three-steps methods. We show the results of some
nuinerical experiments.

In the paper real-valued functions and well-known functional spaces Lg(Q),

WL (Q), WE(S), W2(£2), CD (L) are used.

1. Statement of Problem

Let us consider the following problem with forced boundary conditions (u =0
on 99): find u(zy,z2) € W3 (Q) such that the relationship

(1.1) a(u,v) = (f,v) Yo € W(Q)
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is satisfied, where

2
Ou O
a(u,v) = /{; [ z pij(3717172)'#a_vf + Q($17$2)U'U] dzidz,,
? J

T
i,5=1
(f,v) = / fode,
Q
(1.2) a(w,w) 2 Gillully, g+ ollgy ) = 1V

wi@)’

la(w,v)} < Coljwl] 0 < C1,C3 = const < oo.

i@ Wiz
Here Q is a rectangle @ = {(z1,22) : A <z < B, C < z9 < D}. The
functions p;; = pji, ¢ > 0 belong to C(Q), f(z1,22) € La2(Q). (In forthcoming
we'll use the notations z1 = z, £2 =y too).
For stating techniques of solving problems with natural boundary conditions
we will consider the following problem in a bounded domain  with curvilinear
boundary 8Q: find u(z1,z2) € W () such that the relationship

(1.3) a(u,v) = f(v) Yve WiQ)
is satisfied, where

2

du o
(1.4) a(u,v) =[ [z p,-j(ml,a:z)—u—q— +q(z1,m2)uv]d:1:1da:2 +/ auvdl’
dz; 9z; %

¢
i,j=1 a

fw)= /: fudxidz, +/~ gudT,
@ 8%
a(u,) 2 Callulle 0, lola, )] < Callulls gy - ol
0<C.,C <0, 1CO, dist(aﬁ, Q) > dy = const > 0,
g{z1,22) € Lg(@ﬁ), 0<ap L a(z1,22) a3 <00, ag, a1 = const >0,

0 < g(z1,22) < 1 = const < 0.

Using (1.2),(1.4) and known results of boundary value problem theory it is not

difficult to prove the existence and the uniqueness of solutions to problems (1.1),
(1.3).
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2. Approximation using modified basis functions

We'll assume that the domain {0} is decomposed into subdomains €; by
straight lines parallel to the Y-axis and intersecting X-axis in the points Z;, i =
1,...,I. Thus, = Uf:llﬂ,-, where €); is a rectangle Q; = {(z,¥) : £i-1 <z < &,
C <y < D}, and &y = A, #7141 = B. We denote by +; the interface between
subdomains §; and Q;y;. Let us triangulate subdomains {4} and consider
piece-wise linear functions {w(k) (z, y)},z1 corresponding to interior triangulation
nodes in a subdomain Q, (k=1,..,7 +1).

Let h; be the characteristic size of triangulars in ;.

On v = U/_,7; let us introduce basis functions computed on the basis of
fundamental functions of Poincaré-Steklov operators: precisely on v; = {z =
%;, C < y < D} we consider functions of the following form

0 outside Q; Uy U Q413
sh| g (F141~2)]

j in Qip1;
) — g [P =97, ] P Eiri=a)] i
(2.1) w] = 8in [_D C ah[h(w—ms 1)] in Q.
(3

shl g x (B —Fi-1)]
j=1,.,NO) =11

We will denote all the functions {w§7")} by {w}” };‘;(I) where

N =Y NO). 1t is easy to notice that the functions {wg-k)}, {w§7)} are
linearly independent. R

Let us consider the space Wy P (Q)cW3 () which consists of functions of the

following form

I+1 N(®)

2.2) h=3 S aPu® 4 Z M,

k=1 i=1

Approximation properties of functions vy are given by the following lemma.

LeEMMA 2.1 [13]. For any function v € Vf’zl(ﬂ) N W2(R) there exists a
function vy, of the form (2.2) (for NO) ~ 1/h) such that: |jv — vnllwi) <
Ch ”’U“W22(9), hi < h Vi,

We will look for an approximate solution to the problem (1.1) in the form
(2.2). The unknowns {agk)}, {ag"')} are derived from the system of linear alge-
braic equations:
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(2.3) a(un,w®) = (f,o®), i=1,.,Ng, k=1,.,T+1,

a(up, i) = (f,0$"), §=1,..,N.

This system can be written in a vector-matrix form:

(2.4) Ad=f,
where - .
Al e 0 Ul
oo I
0 ... A Umn
Ly ... Lin A’Y

g iy £3 k
(A1) = alw®,w®), (&) = a@”,0{"), k)i = a(w]”,w)),

ik = (Uk)T, 6= (6'1: -"161+17a7)Ta f = (fly "',fI+17f'y)T~

If we find vectors @y, from the system: di = —A\;lﬁkdﬁ, + 21\,;1 f;;,
k = 1,..,] + 1, and substitute them into the last block equation of the
system (2.4) then we obtain “ the equation on v”

(2.5) Ad, = F,
where A= A, — Y Ly A Uy, F=f, - > LeAg fie

The matrix A in (2.5) is of order N("). The choice of one or another iterative
method for the system (2.5) is the basis for corresponding algorithm of domain
decomposition method. ;From the projection methodss theory we can conclude
that the approximate solutions {us,}, ¢ = 1,2, ... to the problem (1.1) defined
according to (2.3) converge to the exact solution when h; — 0 and the following
estimate is valid:

1w~ unllwzcey < © b I|fllzace).

where the constant C > 0 does not depend on u, uy, h;, h, f, and h; < h are
typical mesh sizes in €.
Let us consider now the problem (1.3), where & C Q. We consider the

decomposition of  into rectangles {€;} 1

;=1 and introduce in {£;} triangular
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meshes. We associate each mesh node from ;, 8Q; (which does not belong to

UZL.;7%) with piece-wise linear Courant function w( )

and on {v;} we introduce
again functions of the form (2.1). We suppose also that the boundary 8 of the
domain coincides with the mesh line. As before, we look for an approximate

solution in the following form

(2.6) Z Z ) | Jg M

where the prime “/’ means that we sum up in the values 1 which correspond to

the mesh nodes from U (£ U Bﬂk) but do not belong to {yx} (i.e. (=i, u:) €
Ur(Q% U 8Q), (z5,%) € {7}). The unknown coefficients are derived from a
gystem of the form (2.4)

Approximation properties of basis functions used here are given by the fol-
lowing lemma.

LEMMA 2.2 [13]. For any function v € WZ(Q) there exists a function vy, of
the form (2.6) such that: ||v — vh||W21(§) < Ch HU”W;(Q)’ h; < h, Vi, where
C = const does not depend on h, v.

Using the statement of this lemma it can be proved that if the solution of the
problem (1.3) belongs to W2(Q) then approximate solutions {u,} converge to
the exact solution v when h; < h — 0 and the following estimate is valid:
[lu— uhHWZI @< Ch ||u||W22 (&) Where the constant C' does not depend on h;,
h, u.

3. Properties of matrices

Let us consider the system of equations arisen while solving the problem
(1.1) with the use of modified basis functions given in Section 2. We will assume
below that N0 = NI = N,

LemmA 3.1 [6,13]. If for solving the problem (1.1) we use modified basis
functions given above then for the matriz A = A E”l LkA lUk the following
inequalities are valid:

(AB, b)s

(z(l)b B, < (s < o,

(3.1) 0<Ci <

where symmelric, positive definite matriz A\S,l) 18 the block- diagonal one with
elements (AS));; = (Vw](-"),Vw,{")), each block of A" is a tri-diagonal matriz
and C1, Cy are the constants from (1.2).
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REMARK. The explicit appearance of Efyl) is presented in [13].

Consider the problem (1.3), the system of modified basis functions intro-
duced to approximate this problem and the matrix fl—(,z) with elements (A,(yz) )ij =
(Vw](-7) , V(") L@ + Jany w?)wp)dfy. The following statement is valid.

LEMMA 3.2. There exist positive constants C3, Cy which do not depend on
h, NS and such that

b,b -
(3.2) 0<03<-—(A—£“‘§‘;-a)72504<oo, VB #0.
(A’Y ba b)2

4. Domain decomposition algorithms

As we have noted before, the domain decomposition algorithms can be con-
sidered as realizations of one or another iterative process applied to the equation
(2.5).

Let us consider the problem (1.1) and write down the iterative process of
minimal corrections method [12] with the use of the preconditioner B= Kf,n :

Py

(4.1) P =0, =AF -F, F =B, #'=d-7r;¢,

- . é’ j
=BG G g,
(B—1AGI, AGY),
The domain decomposition algorithm base on the iterative process (4.1)
consists of the following steps.

Step 0 (preliminary step; § = 0):

I+1
(4'2) AxGr = fr, k=1,.,I1+1, F= .f'y _szgka éb = _ﬁ, =0
k=1
Step 1
-~ 7 -, Bl ~~ -~ . 3 -~ -—p o I+1 -
(43) AVGF =8, 4 =0, k=1,.,1+1, F=4,6 - > Ligi
k=1
Step 2:

N i (#,G9) ) . > = B .
(44) §= (A7, Tj=—(w—.)2"i, F=d -7 &, =8 - ;7.
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Then we return to Step 1 with new @+, £5+1, We repeat this procedure up
to the step jo when the norm of the vectors 53"’ is sufficiently small. Then we
proceed to the last step.

Step 3 (the last step): Find the other unknowns:

(4.5) Apdle = —Lyd + fi, k=1,..,]+1L

Now using the estimates (3.1) and known results of the theory of iterative
processes we can conclude that the following theorem holds true.

THEOREM 4.1. If we use the domain decomposition algorithm (4.2)-(4.5) to
solve (1.1) then for the approximate solution to the problem u}® obtained after
Jo iterations the following estimate is valid

; Cy — Cy\Jo
— 270 ° o | = . —ul )
(46) || %meSC(@+q) e = il
where the constant C does not depend on mesh parameters, and Cy, Ca are the

constants from (1.2).

Consider the problem (1.3). To solve the system (2.4) in this case we use
an algorithm based on the iterative locally-optimal three-steps method [12] with
the use of the preconditioner B= :4\(72) :

(47) (_lm'+1 = an+1&'" -+ (1 - an+1)&'n_1 - an+1Tn+1B‘1§?",

E = 187+ (1 — 0 1)E* Y = A1 Tn1 ™,

where
Eﬂzw—ﬁyﬁ“=A§_1€na &’lza'O“Tlﬁ-léba E—izéo“’rlﬁo,

and the coefficients are definied as follows:

(bn - Cn)cn —éenfn
= , N= 1, 2,
O, —ea)fn — (bn — ca)?
bo  1-On41Cn

Tan+l = — ’
In tpi1 fa

ey a1 =1

n=0,1,2,..

(4.8) b = (A", Gz, cn = (A", 3" V),
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Ay = (@, 6" — £77 )y, ep = (@, E" - E" 1)y,
fo = (B~1AG"™, A5™);, where w" = B1gn,

In this case the convergence rate of iterative domain decomposition algorithm
with the use of locally optimal process is estimated as follows:

(4.9) |l4& - 7|5 <

12+;;;]_ ||48° - fllg = 0, j=1,...,
where D = A*B~*A, p = (1-8)/(1 + V8), the constant § = C3/Cy <1
does not depend on mesh sizes and C3, Cy are the constants from (3.2).

To shorten the consideration we will not write down here realization steps
of the algorithm (4.7), (4.8).

Let u{;" be an approximate solution to the original problem after jg iterations.
Then using (4.9) we conclude that the following statement holds.

THEOREM 4.2. If we use the algorithm (4.7)-(4.8) to solve (2.4) then

. e
|lun —u|lwa ey < C- mﬁ”“h = unllwa @y

where the constant C does not depend on uy, jo, mesh parameters, and p has

the form:
o= (1—+/C3/C4)
(1++/C3/Cy)

The considered modification of iterative decomposition algorithm with the
use of locally optimal three-step process in comparison with three-step conjugate
direction method has higher numerical stability [3] though in this case calculation
formulae for iterative parameters have more complicated form. Moreover, locally
optimal three-step process is applicable when the only restriction is satisfied: the
matrix of the system is positive defined.

5. Numerical example and remarks

Firstly we’ll make some remarks: 1). Let us notice that the meshes in
{Q;} should not be compatible on the interface between subdomains. 2). In
{92;} we can use other basis functions (bilinear functions and so on). 3). The
proposed method of the construction of the modified basis functions can be used
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in the problems with mixed boundary conditions, in some 3D-problems and in
the problems with more complicated domain € (in the last case we can use the
well-known technique of the coordinate transformation ([7],[8])). 4). We can
associate v with the following modified basis functions: we introduce on v some
mesh and some piece-wise polynomial functions extended to subdomains in a
harmonic (or “generalized-harmonic”) manner (for example, by expansion in a
series of Poincaré-Steklov fundamental functions, [6]). To illustrate some of these
remarks let us consider the following numerical example.

Consider the problem given by

Ou

(5.1) —div(eVu) = f in Q; u = u) on Ip; N OonTxy

or by the following generalized statement: find u € W}(Q), u = wry such
that the relationship

(5.2)  a(u,v) = zek/gk] l%gg—dﬁ (f,v)VveW%(Q),leD=
holds, where the domain 2 = ; U~y U (), is presented on Fig.1, € = {ex =
const >0 in §;, i =1,2}, f € Ly(), ur is some given function of W1(RQ).
Let us introduce in {€;} some (different) rectangle meshes and consider
bilinear basis functions {wgk)}. On v let us consider (for simplicity) the uniform
mesh {z; = ¢-h} of the step h, piece-wise linear functions {@ZK“/)(_,,;)} and modified
basis functions, defined as follows:

(5.3) w£'”(x,y>={2 - 6P(2,9) in O, k=1,2}

where

Titi
aff = / 3 (z) - 69 (z,0)dz,
Ti—1

h 4 /2 jmh inx;
ofl = = o) = 3/ 3o (g )(—) cos(22%),

¥y _ ]2 siTEy  shlim(by — y)/A)
95" (v, )‘fb’¢ (m,y)—\/; ) i)

Let us notice that if n = co in (5.3) then {w§7)} are the solutions of the following

problems:

=0o0n Ty NOQ;

) r
Awf’) =0 in Q; {;Uk
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W =0 aty=0; ) =0 aty=>y, by {k=1,2}.

Here {¢§k)} are the fundamental functions of Poincaré-Steklov operators associ-
ated with {Q} (see, [6]).
The approximate solution to the problem (5.2) we look for in the form

N
un = gy + Z Za(k) ) | 3 My
k=1j=1 i=1

where coeflicients {a( )} {a(V)} are determined by the method (2.3). It is easy
to see that here Uy = 0, Ly = 0, k = 1,2 (i.e. the matrix of (2.4) is the
block-diagonal one) and therefore we can solve (2.4) “in explicit form”: dx =
A fr, @y = A7y, E=1,2.

Let us consider some numerical results.

Exp.1 Let us take: €¢; = €3 =1, b1=1 b2='—-1 A=1 a; = 0.3, ag = 0.7.
The exact solution is u(z,y) = {cosg- in Q1; 14n Q2 }. In TABLE 1 the error
&€ = u — up, as a function of n (see (5.3)) is presented.

n=25 n=10 n=15

1 -0.07835 -0.01638 -0.01283
To 0.03134 -0.01357 -0.01197
z3 -0.05390 -0.01430 -0.01466
T4 -0.04319 -0.01688 -0.01505
T5 -0.01323 -0.01633 -0.01428
Tg 0.05545 -0.01627 -0.01452
T7 -0.01873 -0.01306 -0.01365
zs 0.01300 -0.01219 -0.01080
T -0.01045 -0.01376 -0.01111

TABLE 1.
From experiments we could conclude that to have the approximate solutions
of (0.2 + 2.2) % - accuracy it is sufficiently to take n ~ 10. On the Fig.2 the

(7)(

section of wy'’ (z,y) is presented.

Exp.2 Consider the data: by = 1, bs = 0.05, A = 1, a; = 0.3, ay = 0.7,
f={lin Q( ); 0 in Q\Q( )} €1 = €2 = 1, yr) = 0. On Fig.3 the numerical
solution calculated using the modified basis functions is presented.
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F16.3 THE NUMERICAL SOLUTION U}, .

6. Conclusion

Let us make some remarks on the domain decomposition methods with mod-
ified basis functions that we have proposed here.

Firstly let us enlight some advantages of these methods. In several problems
if we use modified basis functions we can diagonalize (by blocks) the algebraic
system of equations (i.e. we have L = 0, U = 0) and solve the problem by
inverting each block-diagonal matrix. In other cases (when I £ 0, U # 0)
the matrix ;1\8)), constructed using modified basis functions, may be used as an
effective preconditioner. Therefore, in some problems with variable coefficient
and complicated boundaries it is possible to construct domain decomposition
methods which convergence rate does not depend on the mesh size. Let us
notice that domain decomposition methods using modified basis functions can
be interpreted as the well known Fourier’ method in the problem with a domain
partitioned into simple shape subdomains. Although the latter situation occurs
in many cases of real interest, this geometric limitation is one of the main draw
backs of our approach. Note also that in our opinion the method presented in
this paper can fully exploit the theory of special functions. The author wishes to
thank Prof. A. Quarteroni and Dr. S. Nepomnyaschikh for fruitful discussions
and remarks.
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