Contemporary Mathematics
Volume 157, 1994

Domain Decomposition Methods with Local
Fourier Basis for Parabolic Problems *

M. IsraeliT, L. VozovoiJf7 A. Averbuchf

T Faculty of Computef Science, Technion, Haifa 32000, Israel
i School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

Two basic spectral domain decomposition techniques are developed
and compared for the solution of time-dependent nonlinear partial differ-
ential equations. The particular feature of both techniques is that they
take advantage, in an explicit way, of the locality of parabolic equations.
In the first approach the matching of elemental solutions in subdomains
is performed by using boundary Green’s functions. The explicit matching
relations are derived which require data exchange between only neigh-
bouring subdomains. In the second approach the solution of multidomain
problem is constructed as a superposition of local overlapping solutions
which satisfy zero boundary conditions in the extended subdomains. This
approach presents a generalization of Overlapping Domain Decomposition
method [4]. For space discretization a pseudo-spectral method is used with
local trigonometric bases, supported on a range of a subdomain. The com-
putational algorithm involves an appropiate projection procedure for the
smooth decomposition of the source function.

1 Introduction

Domain decomposition (DD) methods become an efficient tool for paralleliz-
ing numerical algorithms, since each subdomain can be assigned to different
processor and computed independently. Then, matching of different elemental
solutions is necessary for obtaining a smooth global solution. This is a crusial
step for DD algorithms because it introduces overheads in the implementation
on a parallel computer and may, in extreme cases, reduce or eliminate the gains
of parallelization. Therefore, the main objective of any DD method is to reduce,
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as much as possible, the amount of data transfer and communication among
subdomains. )

In this paper we describe two parallel algorithms, based on spectral multido-
main techniques, for solving time-dependent equations

% = Au+ N(u,u) + G(z, 1), T€NCR? (1.1)
(this type of equations is widely used in Computational Fluid Dynamics as they
model the complete Navier-Stokes system [2, 6] or they are involved as one
split computational step in time-splitting methods [5]). A novel feature of these
algorithms is, that they exploit the local behaviour of solutions to minimize the
communication of processors.

After semi-implicit time discretization the evolutionary problem is converted
to a system of linear second order elliptic equations for the unknown variables
u™ at the new time step t, = nr:

Au" — A%y = oL (1.2)

where the function f™ = f(u", z; ) in the RHS is evaluated on a previous time
step, and parameter A oc 1/7. By using appropriate projection procedures, the
source function f is partitioned in a smooth way. Then the spectral Fourier
method with a locally supported trigonometric basis is employed to construct
the particular elemental solutions.

In the first approach (section 2) the particular solutions in the subdomains
are computed with arbitrary boundary conditions at the interfaces. The conti-
nuity of the overall solution is achieved by using a proper combination of the
homogeneous solutions in each subdomain. These functions appear well local-
ized near the interfaces, which enables the matching relations to be decoupled
in a way that only communication between contiguous subdomains is required
in the matching step.

In a second approach (section 3) we modify the overlapping DD method,
suggested in [4], to be compatible with spetcral methods. This approach is based
on the rapid decay of the solutions of singularly perturbed elliptic operators,
resulting from a semi-implicit time discretization of parabolic time-dependent
problems. The solution to the original problem is constructed as a superposition
of local overlapping solutions which decay to zero at a sufficiently large distance
from the location of the source. The advantage of such approach is that it does
not require the matching of elementa] solutions and utilizes the data exchange
only between neighbouring subdomains. We demonstrate the capability of both
local spectral methods to resolve high gradient in solution with a good accuracy.
We also compare our results and those that were obtained by the Overlapping
DD method in [4] with a stepwise partitioning of the source function.
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2 Parabolic Domain Decomposition (PDD)
Method

To illustrate the basic technique, we consider the one-dimensional version of
equation (1.2)
u" = N = f(z,1), z €[0,£], (2.1)

where f is a known function. The interval £ is divided into S equal subdomains
of length [ = L/8S.

The algorithm consists of two main steps. At first we construct the particular
solutions in each subdomain independently, applying the arbitrary boundary
conditions at the interfaces. For a space discretization we use a Local Fourier
Basis (LFB) [1]. The advantage of this basis is that the matrices of differential
operators in a transformed space are diagonal (in contrast with full matrices
for the Chebyshev or Legendre bases). At the same time, nonperiodic functions
are represented by the rapidly converging series, i.e. this basis can be efficiently
used for solving differential equations in multidomain regions. After this step
the overall solution appear as a piecewise function with the jumps across the
interfaces.

In the second step, we match the elemental solutions by using the boundary
Green’s functions (solutions of a corresponding homogeneous problem).

2.1 Spectral LFB Technique for Solving Non-Periodic
PDE’s

We consider the solution of (2.1) in one of the subdomains z € (a,b) C (0,£) .
The computational algorithm involves a smoothing procedure near the interfaces
to localize the functions in a smooth manner and the application of the spectral
Fourier method with the locally supported trigonometric basis.

To implement smoothing, we introduce a bell function B(x), supported on
an extended interval
a; <a<b<b:

B*(z)+B?(2a—z)=1 =z¢€(a1,a)

B(z)=1 r€labl 2.2)
B*z)+B2(2b—z)=1  z€(bb)
B(z)=0 z<ay, Tz>b

where @ = (a+a;1)/2, b = (b+b1)/2. Inside the subdomain this function is equal
to B = 1 and smoothly decays outwords over a distance 2¢ = b; — b = a —a;.
Some specific forms of B(z) were tested in [3].

The smoothing f of the function f appears as a "folding” across the lines a
and b (see Fig.1):

f=B-f=FFf(z) = B(z)f(z) — B(2a—z)f(26 — z) ~ B(2b— 2)f(2b — x)

(2.3
(the "folded” function f is defined in [a,b]; the second term is "switched on”
only on the interval = € (a;,a) and the third term- on the interval x € (b.b1).
respectively). The extra pieces of the function f, required for the smoothing.
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are provided by overlapping of neighbouring subdomains over a range of 4. On
the interval z € (a,b) we have f = f.

Figure 1: The folding operation

The smoothing procedure keeps the function f highly continuous at z = a, b.
Form (2.3) we see that in the vicinity of the points x = @, = = b the function
f(z) is odd and thus all even derivatives f@) (@) = f2)(E) =0, r = 0,1, ...
After an antisymmetric reflection across the point = = b (or z = @) we get
a smooth periodic function, which can be represented by a rapidly converging
Fourier series.

After that we apply the pseudo-spectral Fourier method to the problem
(2.1) with the "smoothed” source function f instead of f. The corresponding
solution $ will coincide with the solution p to the original problem on the interval
z € (a,b), where the projection procedure does not distort f(z).

The accuracy of the soothing procedure (2.3) depends on the number of
collocation points N, on the interval of smoothing 2¢. If the density of points
is sufficiently large, a high resolution can be obtained for a relatively small
ratio €/1. Thus, the overhead due to overlapping of subdomains, nedeed for the
smoothing, becomes insignificant as the number of collocation points increases.

2.2 Matching Procedure

The algorithm, described above is performed concurrently in all subdomains.
The local solutions p(™ and their first derivatives will have, in general, jumps
on the interfaces. To match those solutions we use a proper combination of
two boundary Green’s functions e=>% and e*~), which are the homogeneous
solutions for (2.1).

We represent a continuous solution in each subdomain as a superposition of
a particular and homogeneous parts:

s
U= U ul® | ul) = p&) 4 A M=) 4 Be ™ g€ [0,1], (2.4)
s=1
The unknown coeflicients A,, B, are determined so that the continuity condi-
tions u(®) = (D (u() = (u(*T1Y on the interfaces z = sl are satisfied.
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Thus, we get a system of matching relations
A, = As+le_/\l —as, Bsy1= Bse_M -~ Bs
1,6 1.6,
=5(5 +8), b= 35 —6),
b5 = UL ) -UL(0), 6, =U0)-UH(0) s=1,2,...,5—1 (2.50)
The corresponding relations for the two extreme subdomains depend on the
global boundary conditions. For example, in the case of the Dirichlet boundary
conditions u(0) = Uy, u(L) = Uyr:
Aleﬁ)‘l + By = ag, Ag + Bse_/\l = —fg
ag = Up —pN(0), Bs =p9(1) -1y, (2.56)
This system can be resolved explicitly with respect to one of the coefficients,
say Bj:

Qs

S—1
1 _ _
Bl = 1w > e Mo + Bs_se M) | (2.6)
s=0

Then by using the recurrance relations (2.5a) we can determine all the other
coeflicients as functions of the jumps é;, 6; on the interfaces. Thus, instead of
overall coupling of collocation points which is inherent in the spectral Fourier
method, the communication is reduced to exchanging of interface data. Note
that the explicit matching relations (2.5) do not depend on a specific form of
nonlinearity or forcing term in (1.1), but only on the type of the boundary
conditions [3].

The communication among the processors remains global, because all the
interfaces are involved in the matching relations. The decisive simplification
can be made by the following observation. Our auxiliary matching functions
e, Mo decay exponentially away from the interfaces. If the parameter
A is large enough (the time step 7 of a time-marching scheme is small). those
functions will be well localized near the interfaces, and all the matching relations
(2.5) become uncoupled:

As = —ag, Bg=—0; (2.7

(the coefficients A;, B; depend on the jumps only at one corresponding inter-
face). In words, instead of global interaction among all the subdomains, only
local communication between the contiguous subdomains is important. This is
the main idea of the Parabolic Domain Decomposition (PDD) approach.

3 Spectral Overlapping Domain Decomposition
method

In the second approach, we exploit again, but in a different way, the local prop-
erties of elliptic operator, resulting from a semi-implicit time discretization of
the parabolic equation (1.1). This approach generalizes the spectral implemen-
tation of the Overlapping Domain Decomposition (ODD) method. introduced in
[4]. Hereafter, we outline the main idea of the ODD method and then describe

its modified smooth version.
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3.1 Overlapping Domain Decomposition (ODD) Method
Consider the 1-D elliptic equation -

H(2)u = Ugy, — XNu = f(z) ian(—E, ),‘
uw(—£/2) =Ur, u(L/2)=Ug, (3.1)

on a two-domain region Q = 0 |JQ». Instead of solving (3.1) in each particular
domain y o with the posterior matching at the interface x = 0, we consider the
following problems:

Hu1 = f1, in ul(—£/2) = UL, U1(£/2) = 0,
Hug = f5, inQ ug(—L)2) =0, ug(L/2) = Ug, (3.2)

[ f, mO _f0, in
fl_{o fa= f iny

Y
o

where

in Qg
Since at each particular point € € the sum f; + fo = f then the solution of
the linear problem (3.1) may be written as a superposition u = u; + us.

Due to the locality of the Green’s function of the operator H(z), the solution
uy will decay exponentially in the region s faraway from the boundary z =
0. The same is true for the solution wuy in the region ;. This enable us to
impose zero boundary conditions at the artificial interfaces x = 4¢ and solve
the following problems

Hi =f, infh ur(—L£/2) = Ug, uy(e) =0,
Hiig = fo, iny ug(—€) =0, ug(L/2) = Up,
;b f, iny ;] 0, inQy
fl‘{ 0 in =17 me 33)

where 7 = Q; |JQ2, Qy =Q, {21, the length of extensions 15 = (y; = €.
The function @ = @, + @y will approximate the solution of the original problem
(3.1) with accuracy € = (C/A)e™

When the time step 7 is small, the parameter A o« 1/4/7 is large so that only
a small overlapping 15 + 21 = 2¢ is required to assure a prescribed accuracy
€.

3.2 Smooth Modification of the ODD (SODD) Method

An appropriate spatial discretization of the auxiliary problems (3.3) is either
finite-difference or finite-element. The direct application of any spectral method
to these problems with a piecewise source functions fl,z would give a poor
precision. To make the spectral implementation accurate, we must decompose
the source function f(z) in a smooth manner.

We are interested in solving the problem (3.1) on the interval Q splitted
into S subdomains of length [ = £/S. Let us introduce the bell function B(z)
having the following properties:

B(zx)+B(z+l)=1, supBC(—¢l+e),
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B(-) = Bl +¢) =0,
z€(e,l—¢) B{z)=1 (3.5)

Bn—l B ‘ Bn 1

gt € ' € e
T gl — =l

Figure 2: Sequence of overlapping bells

The whole interval € is covered by the overlapping bells B, (z), Bp+1(z) =
B, (z +1) as on Fig.2.

Following the idea of the ODD approach, we define a compound bell B such
that

_ 0, —l—e—g<z<-l—c¢
B={ B(z), -l—-e<x<l+e¢ (3.6)
0, l+e<z<l+ete

Using a sequence of bells B, we can decompose the source function into
local overlapping pieces f(z) = Zle B, (z)f(z). The solution to the linear
problem (2.1) in the whole domain can be viewed as a superposition of the
corresponding local solutions u = Zle u”, Hu® = s, fs = B,f. In contrast
with a piecewise extention (3.3), each local source function B; f is highly smooth
at the joint points z = —¢,l + ¢, so that one of the spectral methods can be
applied for solving the local problems in the subdomains.

We illustrate the accuracy of both PDD and SODD local approaches for the
inner layer solution u(z) = %(tanhZOm—l— 1), z € (—1,1), which has a steep profile
near the origin. This solution satisfies the equation (3.1) with an appropriate
source function f(z) and Dirichlet boundary conditions. Table 1 presents the
maximum numerical error at the parameters S = 2,N/l = 128 and several
values of the overlapping interval er = € + €;.

The error becomes smaller as the parameter A increases. At the same range
of the overlapping e the PDD method ensure higher accuracy, than the SOOD
method. When er contracts, the precision of the SODD method deterjorates
much faster in comparisone with the PDD approach.

The last column gives the error, obtained by the ODD method with a piece-
wise partitioning of the source function (3.3) and using finite-differences for a
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er/l ] N eppp | €SO0DD | €0DD
172 [ 100 | 5.2 (8) | 41 (-3) | 5.0 (-3)
800 | 4.4 (-16) | 8.4 (-7) | 4.7 (-4)
1600 | 5.4 (-16) | 4.2 (-9) | 3.6 (-4)
/2 | 400 [ 1.8 (-12) | 3.6 (:3) | 33 (3)
1600 | 1.7 (-13) | 2.8 (-5) | 3.6 (-4)
3200 | 2.7 (-13) | 5.6 (-7) | 2.5 (-4)
T8 [ 400 | 5.4 (9) |42 (2) |41 (2)
1600 | 8.0 (-9) | 3.5 (-3) | 2.5 (-3)
3200 | 8.0 (-0) | 4.7 (-4) | 2.8 (-4)

Table 1: Comparison of the numerical errors for the PDD, SODD and ODD
methods

space discretization. It is seen that the accuracy of this method is substentially
inferior to both spectral algorithms.
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