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A DOMAIN DECOMPOSITION METHOD FOR THE POLAR
FACTORIZATION OF VECTOR FIELDS

J-D. BENAMOU AND Y. BRENIER

ABSTRACT. We recall results on the convergence of an overlapping domain
decomposition method for the Polar Factorization of vector valued functions
and the numerical algorithm obtained via a consistent discretization of this
problem. We present numerical results for this method.

1. INTRODUCTION

We are interested in the following non linear problem :

Let © C RR? be a convex bounded open set, let u € LP(R,R%), find the unique
rearrangement of v on € in the form Vi, 1 convex. This problem (occurring in
meteorological modeling [7]) has been extensively studied by Brenier [4] as the Polar
Factorization of vector fields and generalizes the concept of monotone rearrange-
ment of real functions {5].

We proposed a Domain Decomposition method to solve this problem :
According to a geometrical condition we call the ” convex overlapping” principle, we
decompose Q in two convex overlapping subdomains and alternately compute on
each subdomain the Polar Factorization of the rearrangements given by the previous
steps. This strategy provides an iterative procedure (u provides the initialization)
which reduces our problem to a sequence of subproblems. We established the
convergence of this Schwarz alternating method for the Polar Factorization. The
proof (detailed in [2]) does not rely on results for Elliptic non-linear equations
obtained by Lions [6] but rather on continuity properties of the Polar Factorization
[4].

A discretization of the Polar Factorization problem was introduced in [3] under
the form of an assignment problem (consistency of this problem is proved in [2]). In
the spirit of the continuous algorithm, a suitable decomposition is defined and an
analogous domain decomposition method has been proposed to solve the discrete
version of the Polar Factorization. As a consequence of the degeneracy produced
by the discretization, the discrete algorithm is not always convergent. However we
prove in [2] that the sequence of outputs produced by the algorithm for each level
of discretization tends to Vi as we refine the discretization. We generalize this
method to multi-subdomains decomposition and obtain a numerical algorithm.
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Section 2 rapidly describe the Polar Factorization and its discretization, and
presents the algorithm. Section 3 contains the numerical study.

2. PoLAR FACTORIZATION THEORY

2.1. The Polar Factorization and its discretization. Let Q C R?be a convex
bounded open set, u € £P(£2, R%) non degenerate in the sense that mes(u=1(E)) = 0
for each Lebesgue negligible subset E. Then, there is a unique Polar Factorization

(1) u=Vios

with ¥ € WHP(Q,R) convex and s € S, the set of measure preserving mappings
(8 = {s, fo f(s(2)) de = [, f(z) da, Vf € C(D))).

The domain 2 is mapped into itself by s and V¢ is a rearrangement of u on 2.
Moreover s is characterized by the following optimization problem :

(2) | /;lu(:c)s(m) de = rtr}sa‘,sx/ﬂu(m)t(:c) dz

See [4] for more on Polar Factorization.

Following [3] we introduce (z7) ¢ = 1..n(= N?) the lattice points of a regular
(N x N) square grid discretizing a square Q and (u?) a discretization of u on this
grid. We define 8" to be the set of permutations of the first n integers. Restricting
the measure preserving mappings to the class of permutations of identical cells
of center (z}') covering © and approximating u by (u™), the piecewise constant
vector field of value u? on the corresponding cell, we obtain from (2) the following
assignment problem :

Find o € 8" such that

(3) D el g = max el ug).
i i

This is called the discrete Polar Factorization problem and (u;‘(i)) is the discrete
optimal rearrangement of (ul). It converges with n to V¢ in £! [2].

2.2. Domain decomposition technique for the Polar Factorization. The
convergence of a Schwarz alternating method with overlapping subdomains for
problem (1) has been established under the geometrical ” convex overlapping” condi-
tion (i.e. ”every segment joining the subdomains has a non-zero length intersection
with the overlap”). An analogous domain decomposition algorithm for problem 3
has been proposed and studied : Set

wiUwppaUws = Q, wy Uwys =, wia Uwy = Q9,

a domain decomposition of Q (see figure 1) verifying the ”convex overlapping”
condition and note O}‘ the set of indices ¢ such that z? € Q; forj=1,2.
Note that O U O3 = O™, the set of all indices and O} N O} is non empty.
ST is the set of permutations of indices in o7 (Gj=1,2).

We alternately rearrange on each subset of points defined by OF and O% by
solving subproblems of form (3). We proceed as follow :

Initialize v? = u? for all 1.
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F1GURE 3. Decomposition of the subproblems.

3. TESTING THE ALGORITHM

In order to test the algorithm we take the identity field on [0, L] x [0, L], gradient

of the simple convex surface ‘”2—;"/—2 ((z, y) are the space coordinate), and perturb it
by rotating the values of this field on a disk in the domain (see figure 4). Then we

x

o

N

FIGURE 4. Field lines of Identity perturbed by the 7 rotation of a disk.

discretize it on a regular grid and input it to our algorithm. The monotony of the
vector field (convexity for the potential) will be locally violated at the boundary of
the disk but not inside the disk. This problem is a difficult one for the basic steps
of our algorithm are local and still it will have to globally rotate the disk to recover
the solution.

We present results obtained for different angles of rotation and compare them to
those obtained with a routine solving exactly the general assignment problem (we
will refer to this routine as AP -and to ours as DD). We use a 10 x 10 grid as the
AP routine is a lot time consuming.

Our algorithm can be seen as a successive displacement on the grid of ” particles”
(by the local permutations) on which the vector field values are attached. So we
represent by scaled arrows the move of the particles from the initial to the final
state. For each test, we use the same scaling for the arrows when representing
the solutions of the different algorithms. We expect to recover the inverse rotation
to the initial perturbation which would restore the monotony of the vector field.
In order to avoid the algorithm to be stuck in a cycle of permutations for which
the global criterium is non increasing (our stop test), we choose heuristically to
permute randomly the values of the vector field on the grid before the application
of the algorithm. The results for different angles of rotation are displayed for AP
and DD in figure 5. Except for a slight difference in the 7 and I case, the results
are identical. The time required on a workstation for these simulations go from
0.25 to 0.3s for DD against 2 to 11s for AP (the best algorithms for the assignment
problem are in O(n®) at the worst and O(n>logn) on average [1]).
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FIGURE 5. AP (left) and DD (right) solutions for different angles
of rotation : from top to bottom %, %, 3, 7.
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FiGURE 6. DD solutions for a £ angle of rotation and different
values of n : 400, 900, 2500, 10000

We concentrate on the § case and increase progressively the number of points
of the discretization. It provides a numerical tool to verify the consistency of the
algorithm studied in [2] and to compute an empirical cost. The results are displayed
in figure 6. We see that the move of ”particles” approximate better and better the
rotation of a disk in spite of some parasitic movements. The algorithm requires an
average of Cn' © operations which therefore confirm the O(n?) cost.
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FiGURE 1. Q decomposed and the points () of its discretization.

Step a
Solve =;con & Vgn(;) = MaXgnesy YicorTi Ven(iy:
Update o] = Z,,(i) forie OF.

Step b
Solve Zieo; T} Vpn(;) = MaXgesy Zieog"’?-v?n(;)-
Update v} = v;‘nw forie€ O3F.

The global criterium (3";¢on #7.v]") is increasing. We iterate step a and b until
that increase stops. Although convergence of the iterative method is not guaran-
teed for fixed n, we established the convergence with n of the discrete vector field
(v}) to the rearrangement V¢ of u in £'. Domain decomposition for the Polar
Factorization of vector fields is detailed in [2].

2.3. The multi-subdomains algorithm. We decompose a n = N x N points
grid in two steps. We solve subproblems on a decomposition of 2 X N vertical
subproblems that are alternately shifted horizontally (figure 2) until the global
criterium is stationnary. Each of these subproblems is solved by the same technique

FIGURE 2. Decompositions of 2.

(see figure 3) thus reducing the problem to a sequence of 2 x 2 subproblems which
can be treated explicitly. =~ We tested this algorithm with satisfactory (though
not exact) results. We conjecture and it has been observed numerically that the
necessary number of iterations to converge for a grid which largest dimension is N
is of the same order N. Then we obtain a O(n?) cost for a double decomposition
such as the one described here. Note that all the subproblems which domains do
not overlap can be solved in parallel. This reduces the cost of our method to O(n)
on a massively parallel computer.





