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An Additive Schwarz Algorithm
for Piecewise Hermite Bicubic
Orthogonal Spline Collocation

B. BIALECKI, X.-C. CAL, M. DRYJA, AND G. FAIRWEATHER

ABSTRACT. An overlapping domain decomposition, additive Schwarz, con-
Jjugate gradient method is presented for the solution of the linear systems
which arise when orthogonal spline collocation with piecewise Hermite bicu-
bics is applied to the Dirichlet problem for Poisson’s equation on a rectan-
gle.

1. Introduction
Consider the Dirichlet problem for Poisson’s equation
(1.1) —Au=f(z,y) in Q, u=0 on 99,

where = (0,1) x (0,1) and 99 is its boundary.

Let k = 1/Nj, and let {t?}~", be a partition of [0, 1] such that th = kh. In
the following, this partition is referred to as the fine grid partition of [0,1]. Let
M} (0,1) be the space of piecewise Hermite cubics on [0, 1] defined by

Mp(0,1) = {w € C*[0,1] : Vlpn e € Pk =1,..., N3},
where P; denotes the set of all polynomials of degree < 3, and set
(1.2) vt = M20,1) @ M2(0,1),

where _
M(0,1) = {v € My(0,1) : v(0) = v(1) = 0}.
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Let {€!}72" be the set of Gauss points in (0,1), where
Gy =th oy +h(3—VB)/6, &=tk 1 +h(3+V3)/6, k=1..., N,

and let G* be the set of Gauss points in Q, namely,

(1.3) P @) my e (@1}

The fine grid piecewise Hermite bicubic orthogonal spline collocation (OSC)
problem corresponding to (1.1) consists in finding u; € V? such that

(14) — Aup() = f(§), £eg™

It was shown in [6] that there is a unique solution of (1.4) and that |u —
uh”H’(Q) = 0(h4_j)1 j=0,1ifue HG—](Q)

The OSC solution uy satisfying (1.4) can be computed in O(N? log N3 ) arith-
metic operations by the direct fast Fourier transform (FFT) solver of [1], which
is well-suited for parallel computation. In the present paper, we discuss a par-
alle] iterative domain decomposition method for solving (1.4) which is based on
dividing  into a number of overlapping squares. Our method is an additive
Schwarz (AS) conjugate gradient (CG) algorithm with coarse grid and arbitrary
overlap, and it involves solving independent fine grid OSC subproblems at each
iteration step. Fach of these subproblems can be solved by the FFT solver of
[1]. The presentation and analysis of the OSC AS CG method are based on [3],
where a general framework of AS methods for solving a variational equation was
developed. It should be noted that in [2] Fourier analysis was used to investi-
gate the convergence of the classical Schwarz alternating algorithm with two and
three overlapping subrectangles for the solution of (1.4).

The paper is organized as follows. The description and analysis of the OSC AS
CG method is given in Section 2 and its implementation is discussed in Section
3. Results of preliminary numerical experiments are reported in Section 4.

2. Additive Schwarz Conjugate Gradient Method

Following [3], we first decompose € into overlapping squares and introduce
corresponding spaces, bilinear forms, and operators, all of which are essential for
the variational formulation of AS methods.

Let H = 1/Np be an integer multiple of k and let {tF1N5 be the “coarse grid”
partition of [0, 1] such that tff = iH € {t}}¥* . Assume that each coarse grld
square Q;; = (L1, tf) x (t7 ,t¥), 1 < i,j < Ng, is extended to a square 2
{2 so that 0Q;; does not cut through any fine grid square (t}_,,t8) x (t& ,, t, ),
1<k,i< Nh, and so that dist(9Q;; \ 99, 8% ;\0Q) > 6 >0, where § < H.

Let O, be the set of all fine grid nodal pomts in Q, that is,

Q= {(:r, y):z,y € {th kao}-
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With each Q;, we associate the space

Vij={veVvh: ’U'ag;]_ =0,v=v, =0y =gy =0 atall (z,y) € \ﬁij}
It is important to note that if v € Vj;, then, in general, v # 0 in a narrow strip

of width A around Q;] We also introduce the space Vog = V¥, where VE ig
defined by (1.2) with h replaced by H, and note that

Ny
vk = Voo + Z V,J

ig=1
Let b and by, 1 < 4,5 < NH,-and bgo be the bilinear forms on V* x Vh,
Vij X V35, 1 < 4,5 < Np, and Vo x Voo defined respectively by

b(v,w) = (-Av,w)gn, (2, W) = (h?/4) Z (zw)(€),

eeG”
bij(v,w) = (—Av,w)g,,, (z,w)g, = (B2/4) D (zw)(€), 1<i,j< N,
Eegz’j
b()()(’U,’w) = ('—A’U,'LU)GOO, (Z,UJ)goo = (H2/4) Z (zw)(E),
€€Goo

where G;; = G" n Qs
h replaced by H. _

In the following, C and C;, i = 1,2, denote generic positive constants that
are independent of h, H, and 4.

Equation (3.2) in [4] and equations (2.7) and (2.8) in [6] imply that b is a
symmetric bilinear form on V* x V* and that

Gy ol @ < b(w0) < Caloliny, v E V™.

1<4,j < Ng, Goo = G¥ and G¥ is defined by (1.3) with

Hence V" can be regarded as a Hilbert space with b(-,-) as an inner product. It
also follows that b;; is a symmetric positive definite bilinear form on V;; x Vij-

Let T;;, 1 < i,j < Ng, and i = j = 0, be the linear operator from V* into

Vij such that
b“'j(TiJ'v’ w) = b(v$ w)7 wE ‘/ijy

and let T be the linear operator from V* into V" given by
Ny
T =Ty + Z T35
%,j=1
The following theorem is the main theoretical result presented in this paper.

THEOREM 2.1. The operator T' is self-adjoint on V* with respect to the inner
product b(-,-). Moreover,

@1) Gy (1+ H/6) " b(v,v) < b(Tv,0) < Cabv,v), veVh
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The proof of Theorem 2.1, which will be given in detail elsewhere, follows
from the three key inequalities in the general theory of AS methods [3]. These
inequalities can be verified, in turn, using the following, easy to prove, lemmas.

LEMMA 2.1. Let S, be the inside boundary strip in Q of width v. Then
vlZ2e,) < CY* I VollZag), v € Ho(f).
LEMMA 2.2. Let VP = My(0,1) ® Mp(0,1), and let

loliZz @) = B Y [0+ (hvn)? + (hy)? + (hPgy)?] (),  we V™
(mv:‘/)eﬁh

Then
Cilollzz ) < llvllzz) < Callvlizze), ve v,

‘We are now in a position to describe the OSC AS CG method of this paper.
Let up, € VP be the solution of (1.4) and let g5, = Tuy. (It is important to note
that it is possible to compute g even though up is unknown.) Consider the
problem of finding vp, € V" such that

(22) TUh = gh-

Since T is an invertible operator, it follows that (1.4) and (2.2) have the same
unique solution. The AS method for (1.4) consists in solving (2.2), rather than
(1.4), by an appropriate iterative method. Theorem 2.1 implies that the CG
method in the Hilbert space V?, with the inner product b(-,-), can be applied
to (2.2). It follows from (2.1) and well-known results on the CG method (see,
for example, [5]) that the rate of convergence of the proposed AS CG algorithm
will depend on /H/§ but it will be independent of k. Moreover, if dist(9Q;; \
00,00}, \ 89Q), 1 < 4,j < Ny, is proportional to H, then the the rate of
convergence will also be independent of the overlap.

3. Implementation

An implementation of the AS CG method requires, among other things, the
computation of

(3.1) wi; = Tyv, veVH

1<4,j < Ng,and i = j = 0. In the following, we show that computing w;;
for 1 < 4,7 < Ny amounts to solving a fine grid OSC subproblem on Q’ij with a
modified right-hand side. To this end, for 0 < k < Ny, let o, darr1 € Mp(0,1)
be such that

(3.2)
Go(tf) =6ty Sha(tf) =0, Popr1(tP) =0, Phpir(th) =6ks, 0<1< Ny,
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where 6y is the Kronecker delta. Assume that Q;; = (th ,¢h ) x (t,4). For
2k1 +1<m < 2k, let 62, € Mh(t ) be such that

(3.3) agz(fn) = bm,n, 2k1+1<n < 2k,.

(For the existence and uniqueness of 82, see [4] and [6].) Similarly, for 2I; +1 <
n < 21y, let 6% € M (th ¢} ) be such that

(3'4) eg(fm) = 6n,ma 2l +1<m L2,
Clearly, for m and n such that 2k, +1 < m < 2k, and 2l; +1<n <2,

02(x) = > ampdu(@), ze[th’tkz]

(3.5) RSkt
0y) = Y. Buadi(y), yelth, i,
€S 1y
where

Sii, ={201+1,...,2i0— 1,2i5 + 1}.
Using (3.3)-(3.5), it is shown in Appendix A that for 1 < 4,j < Ny, w;; of (3.1)
satisfies

(3.6) Bwii () = Av(€) +2;(8), € €Gij,
where
Zij(émv n) =
KoL
Z Z Ot 2k, 410,21, +1 Z Z Av(&r, &) pak, +1(Ek)Pat, +1(&)
r=1s=1 k=k!—11=l,—1
kl
+ Zam 2hot1 D AU(Er, En)Pok,+1(Ek)
k=kj—1

ll

+Zﬁn o, +1 Z Av(&m, &) B, +1(8);

=1 =1

and where j; = 2(j; +1—1). If k1,11 = 0 or ks,ly = N, then the corresponding
sums with respect to k and ! are absent in z;;. It should be noted that the
modification z;; on the right-hand side of (3.6) involves values of Av at the Gauss
points in the strip of width A around Q:J This is a consequence of the fact that
functions in Vi; are different from zero in such a strip. For fixed 1 < 4,5 < Ng,
the coefficients a and 8 appearing in z;; can be computed once and for all before
starting the iteration process in O(y;;) operations, where p;; is the number of
unknowns in w;;. Each fine grid OSC subproblem (3.6) can be solved, in turn, by
the FFT algorithm of [1] at a cost of O(u;; log ;) operations. The computation
of wop of (3.1) is equivalent to solving the coarse grid OSC problem with stepsize
H. As in the case of fine grid OSC subproblems, the solution of the coarse grid



242 B. BIALECKI, X.-C. CAI, M. DRYJA, AND G. FAIRWEATHER

OSC problem involves certain coefficients that can be computed before starting
the iteration process at a cost of O(ugo) operations, where pgy = O(H~2) is the
number of unknowns in wgo. The setting up of the right-hand side in the coarse
grid OSC problem requires O(pgéz + p) operations, where p = O(h™2) is the
number of unknowns in up. Hence, if H is at least as large as O(h?/3), then the
cost of one iteration in the OSC AS CG method is O(ulog p) operations.

It should be noted that, if u,(lo) is a starting approximation in the OSC AS
CG method, then there is no problem with computing Tu,(zo) —gp = T(us)) —up)
in the first step of the iteration process since Auy(£) is known, by (1.4), at each
Gauss point ¢ € G".

4. Numerical Results

The purpose of the numerical experiments was to examine the rate of conver-
gence of the OSC AS CG method. Problem (1.1) with the exact solution

w(z,y) = 10z(1 — 2)y(1 —y)

was discretized using OSC with piecewise Hermite bicubics, resulting in (1.4)
with the solution uj, = u. The unit square O was divided into two overlapping
subrectangles Q7; = (0,2/3) x (0,1) and Q5 = (1/3,1) x (0,1). For different
values of the stepsize h = 1/Nj,, the AS CG method with the starting approxi-
mation ug]) = 0 was used to compute successive iterates u%") converging to up.
Since the local Hermite basis functions of (3.2) were used to represent uy, the
number of unknown parameters in uj, was 4N?. Table 1 presents the discrete
maximum norm errors

e = max |(un —u{™)(z,y)l.
(wsy)EQh

Table 1. Errors ey in the OSC AS CG method.
n |0 2 4 6 8
e | .6].7x1071 | 5x 1073 | 5x 107 | 1x 10-°
e | 61.6x1071 [ 4x10-3|.4x10%]| 9x 106

As expected, the results obtained show that the rate of convergence of the OSC
AS CG method is independent of the fine grid stepsize h.

Out of curiosity we also tested the OSC AS CG method without modification,
that is, OSC subproblems (3.6) with z;; = 0 were solved at each iteration. The
corresponding results are presented in Table 2.
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' Table 2. Errors e%‘h) in the OSC AS CG method with z;; = 0.

n |o 2 4 6 8
e | 6].4x1071 [ 1x 107 | 6x 102 1x 1073
e 6] 2x1071 [ 8x103 | 2x 10% 1x1075

On comparing corresponding entries of Tables 1 and 2, we see that both OSC
AS CG methods, with and without modification, performed equally well for A
sufficiently small.
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Appendix A.
To verify (3.6), we note by (3.1) that
(Awij, 2)g,, = (Av,z)gn, 2z € V5.
Since {¢‘k}keSk1,k2 ® {b1}ies,, ,, i8 a basis for Vyy,
(Awij, i), = (Av, Bedi)gn, k€ Sk kyy 1€ Sty
Therefore, for m,n such that 2k; +1 < m < 2ks and 203 +1 < n < 21y,

(A1)
(Awij, atm kB 1Pk Bi)c,; = (AV, U kBt BkPt)o,; + (A, O kPn i bk Bi)orrg,,

where a,,, ; and B, are the coefficients of (3.5). Summing both sides of (A.1)
over all k € Sy, , and all ] € Sy, 1,, noting by (3.5) that

Yo D amplutk(@i(y) =05 @0L), o Elth.th] yeld gl
k€Sk, .k, 1ESH 1,
and using (3.3), (3.4), we get
(A.2)
Awij(Em, €n) = Av(Em, €n) + (4/B2) (A0, (D ampde)( D Brid)or,,-

kESky ky 1e€8S 1y
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Finally, the expression for z;; is obtained from the second term on the right-hand
side of (A.2).
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