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Coupling Boltzmann and Euler Equations
without Overlapping

J.F. BOURGAT, P. LE TALLEC, B. PERTHAME, Y. QIU

Abstract

We present herein a method for coupling the Euler and the
Boltzmann equations when these equations are used on two differ-
rent, possibly nonoverlapping subdomains. This strategy is based
on a kinetic writing of the Euler equations and on a pointwise
matching of the associated kinetic half-fluxes. A time-marching al-
gorithm is then used to solve the coupled problem. This approach
is tested numerically on different two-dimensional configurations
involving rarefied flows at low Knudsen numbers.

1 Introduction

The most accurate model for predicting rarefied flows around obstacles
flying at high speed and high altitude is based on the Boltzmann equa-
tions. Unfortunately, when the mean free path gets small, the numerical
solution of these equations becomes impossible : indeed, the grid which
is used must have a discretization step smaller than the mean free path.
The classical solution consists then in replacing the Boltzmann equa-
tions by the limit obtained when the mean free path goes to zero, that
is either by the Euler equations (at order 1) or by the Navier Stokes
equations (at order 2).

But, when the mean free path is roughly one thousand times smaller
than the length of the obstacle, these limiting models are not complety
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valid, especially next to the obstacle. In such situations, one may use
the Euler (or Navier-Stokes) equations far from the body but one must
use the Boltzmann equations in the vicinity of the body. The objective
of this work is to develop a numerical method for the simultaneous so-
lution of the Euler and the Boltzmann equations when these equations
are used together but on two different domains. For this purpose, we
first introduce adequate compatibility conditions to be imposed at the
interfaces, and we then propose an algorithm for the numerical solution
of the resulting coupled problem.

The compatibility conditions are based on a kinetic interpretation of
the Euler equations [3]. With this interpretation, the unique unknown in
both domains is the kinetic distribution f(z, v, t) of particles which are at
time ¢ in point = with velocity v. This distribution satisfies an equation
which looks like a linear transport equation. Therefore, on each domain,
we only need to impose as boundary conditions the kinetic distribution of
the incoming particles. For the Euler domain, this distribution is taken
to be equal to the distribution of particles leaving the Boltzmann domain
at the same point. Similarly, for the Boltzamnn domain, the distribution
of incoming particles is taken to be equal to the distribution of particles
leaving the Euler domain at this point. These two conditions are the
two compatibility conditions to be imposed at the interface between the
Euler and the Boltzmann domain. With these conditions, we match the
half-flux going out from one domain to the half-Aux entering the other
domain. ‘

The coupling algorithm is the time marching algorithm introduced
and studied in [2] and [6]. It successively solves the Boltzmann equations
on the Boltzmann domain with imposed boundary conditions deduced
from the previous Euler solution, and the Euler equations on the Euler
domain with imposed boundary conditions deduced from the Boltzmann
solution.

The present paper begins by the derivation of a kinetic writing of the
Euler equations, from which we deduce compatibility conditions to im-
pose at the interface between Euler and Boltzmann (§2). The coupling
algorithm is then described (§3), together with the numerical solvers to
be used locally on each domain (§4,5). The resulting numerical method
is then validated on several two-dimensional examples at low Knud-
sen numbers (§6). This presentation concludes by a brief analysis of
the numerical results and by a description of the developments needed
in order to realize a three-dimensional adaptive coupling between the
Navier-Stokes and the Boltzmann equations.
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2 Kinetic Euler Equations and Coupling Con-
ditions

2.1 A simple kinetic writing of the Euler equations

Following Perthame [3], we first introduce a positive distribution
function x défined on IR" and satisfying

x(—w) = x(w), Vw € IR",

/I N X(w)dw = .17 (1)

/INwizx(w)dwzl, Y1 <i<N.

To a given density field p(x,t), velocity field u(z,t) and temperature
field T'(x,t), we then associate the distribution function

oz, t) v — u(x,t)
w gl 7t = ; e 5% 2l PN * 2
fp. ,T(-T v ) (RT(x’t))I\,/Q X ( RT(Z’t) ( )
Here, f is a kinetic distribution of particles in translation with ve-

locity v.
In standard kinetic theory, the distribution function y is taken as
the Maxwellian

1 —w?
x(w) = W Pl — )
In this case, the associated distribution f is an equilibrium solution

of the Boltzmann equations. In our numerical tests, we have also used
the step function

x{w) :(%)’V if  suplw] < V3.

=0 if not,

which leads to very simple calculations.

In any case, if we choose a distribution function x satisfying (1), aCnd
. . AT — P
if we introduce the notation A = (N +2 — Nv)/2(y — 1) with v = .

the ratio of specific heats, we have

pa.t) = [ Syl vt (3)
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pu(z,t) = /IRN Vfpur(,v,t)dv, A (4)
E(z,t) = /IRN <|_v2|_2 —|—)\T> four(z,v,t)dv. (5)

There is in fact a strong connection between the distribution function
f and the corresponding moments p, pU and E, as indicated in the next
theorem due to Perthame [3]:

Theorem 2.1 : Let f be solution of the linear kinetic problem

df +vdsf=0, t>0, =z,0elR", (6)

with instial data

f(x,v,O) = fPo,umTo' (7)
Then the moments p, pu and E defined by (3)-(5) are first order

approzimation (in At) of the solution of the Euler equations for any
time t < At. :

This result has three useful consequences.

First, it reduces the numerical solution of the Euler equations to the
numerical solution of a linear kinetic problem for which easy numerical
algorithms can be introduced. '

Secondly, since p, pu and E are the moments of the distribution
function f, their associated fluxes F.n in the Euler equations will be the

_integral of the corresponding kinetic flux, that is

Fn = FY4+F™

1
N / (U'n) v fp,u,T(U)d’U
2.n>0 |’U|2
5+ AT
1
"/, <0(’U.’n) o2 v fowr(v)dv. (8)
o LE T

Above n denotes the unit normal vector to the surface across which
we compute the flux and F is the flux function associated to the Euler
equations. that is

U
F(p.pu.E)y= | pu ® u+pld |, (9)
(E +p)u
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with

1

p=pRT = (y—1) [E—gpIUIﬂ-

Finally, the above kinetic interpretation indicates the type of bound-
ary condition which is relevant for the Euler equations. Indeed, the
natural boundary condition for the kinetic problem (6) is

f(z,v,6,t) = fimp(x,v,6,1), Vo € 00, VE, Ve > 0, Vv with v.n < 0.

Here, € is a distribution of internal energy associated to the term
AT. If we write this condition in terms of the kinetic flux (8), we then
obtain the following boundary condition for the Euler equation

1

F.anE = (vn) v fp,u!T(T))dU
v.n>0 % 4 )\T
(10)

1
+// ('U.n) v firn.p(xg v, &, t)d’l}d€
e Ju.n<0 % +e

2.2 Geometric description

We consider the flow of a rarefied gas in a global domain Q around
a solid body of boundary I'ys (Figure 1). We split this domain into
two (possibly overlapped) subdomains Qg and Qp. The domain Qg
will be used for the Boltzmann equations. This is a local domain which
contains the obstacle, with internal boundary I'yy and external boundary
I's C Qp. The domain Qg will be used for the Euler equations. This is
a large domain, with an internal boundary T g;n: C Qg which surrounds
the body and an external boundary I'g.,; which is the external boundary
of the computational domain Q.

In the present approach, the subdomains Qg and 2z are fixed arbi-
trarily at the beginning of the calculation but in the future, the definition
of Qr and Qp will be automatically adapted to the physical character-
istics of the solution.

2.3 The Boltzmann problem

On Qp, as stated earlier, we solve the Boltzmann equations. When we
have internal degrees of freedom, these are
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Tgin

Overlapping zone

Figure 1: Description of the Domain Splitting

with f the kinetic distribution of particles at point x with velocity v and
internal energy ¢, and Q(f, f) the quadratic collision term

Qo= [ [ [ (A= 1Rl v w)dndads.

(12)
Above, ¢(v — vy,w) is the collision cross section, and we have used
the notation

fl :f(xa’ulveht))
f, - f(:[,‘,’ul’{-j"t),
i = flz.v,e.t),

with (v,¢’) and (v{, ;) the velocity and internal energy of the particles
(v.e) and (v;, ;) after a collision of parameter w. In our calculation, we
have used a hard sphere model for the cross section (q = d?|(v — v;).w|)
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and a Larsen-Borgnakke model for predicting the velocities and internal
encrgies after collision [7].

At the wall T',,, we impose as kinetic boundary condition a linear
combination of a specular reflexion and of a complete thermal accomo-
dation. In other words, each particle colliding with the wall is reemitted
with a velocity and internal energy distribution of the form

v'=(1-a)v, +av), (13)

e =(1-a) +oze. (14)

Here a € [0,1] is the coefficient of accomodation, v/ and €/, are the

velocity and internal energy of the particle after specular reflexion, and

vl and €', are the velocity and internal energy of the particle reemitted

with a Maxwell distribution at temperature Ty. In a local orthonormal
basis (¢,n, z), with n normal to the wall, we have

Vig =V, UL, = —Un, UL, =, €. =g, (15)

sn

/
()= v (G ). (6)

- sin 2ma,
’U;n = 3/ —TVV 10g as, (17)
Nd
E:Ja = T . _TVV ].Og a4, (18)

with (a;)i=1.4 random numbers uniformly distributed between 0 and 1

and E the number of internal degrees of freedom of a given particle.

As a final boundary condition, we must specify the kinetic distri-
bution of the particles entering the domain 25 through the external
boundary I'z. We suppose here that the gas leaving the Euler domain
and entering the Boltzmann domain is in thermal equilibrium, which
means that we impose the boundary condition

_ p —(v—u)? —
f5(@.v.2.t) = Geantrmr @@ (Tar) o () (19)

Vrelg, Vv witheng <0, Ve>0.

Here, p, u and T are the local values of the Euler solution on I'p.
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2.4 The Euler problem

On Qg, we solve the Euler problem

p
O | pu | +div[F(p, pu, E)] = 0, (20)
E

with F' the flux function introduced in (9). To this, we add the kinetic
boundary conditions introduced in (10), that is

1

Falooy = [ (vm) R PO
v. N2 v "_)\T

2

1
+ // (v.m) v Simp (v, €)dedv.
e Ju.n<l0 IU{Q c

2

In our coupled problem, we take as distribution of incoming particles
the functions

Fimplr,, et = frmrtioni T With & = AT, (22)

fimp|FE int = fB(a:,v,s, t)' (23)

In other words, the kinetic distribution imposed at infinity is the
one associated to the uniform fow (Poos Uoes Tio) and the distribution at
I’} int 18 equal to the Boltzmann distribution introduced in §2.3.

In our numerical tests, the distribution function x used to generate
the distribution f,, r was the step function of §2.1. With this choice,
the boundary condition (21) takes a simple algebraic form, which is not
the case when one uses a Maxwell function in the definition of X-

2.5 The final coupled problem

Our final problem consists now in finding steady state solutions of the
Boltzmann equations (11)-(12) written on Q5 with boundary conditions
(13)-(19) and of the Euler equations (20) written on €05 with bound-
ary conditions (21)-(23). These two systems are coupled through the
boundary conditions (19) and (23). We will now introduce an algorithm
which solves these systems in an uncoupled iterative procedure.
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3 The Coupling Algorithm

The proposed algorithm is the time marching algorithm introduced in
[2] or [6]. It proceeds as follows:

For n > 0, and knowing estimates (p”, pu™, E*) and f2 of the Eu-
ler and Boltzmann solutions on Qp and Qp, new estimates At and
(p™"L, pumtt, E™H) are computed by:

i) solving the Boltzmann equations (11)-(12) on Q5 with initial con-
dition f(.,0) = f3 and boundary conditions (13)-(19). In (19), the in-
coming distribution fp is calculated using the known values (p,u,T) =
(o™, u™, T™). At the end of this step, we obtain an improved estimate

51! of the Boltzmann solution on Q5 and an updated value

1
(F™tH~ :// (v.n) v "t (z,v,€)dvde (24)
e Ju.n<o E}ﬁ +e
2

of the half-flux entering Qp through I'j, ;.45

ii) solving the Euler equations (20) on Qg with boundary conditions
(21)-(23), where in (21) the value of the half-flux entering Qz thought
T gint is replaced by the value (F™*1)~ computed in (24). At the end of
this step, we obtain the desired new estimates (p™*!, pu™*t!, E"t1).

In practice, the above algorithm is stopped as soon as the trace of
(p™, pu™, E™) on ' reaches a stationary value. This means then that
the boundary conditions for Boltzmann will not vary from one step to
another and that therefore we have reached a steady solution of the
Boltzmann equations (and hence of the Euler equations since the value
(F™*1)~ used in the boundary conditions (21)-(23) will then stay fixed).
In our computations, the stopping criterion was

Res = ( > ot —p?l) /( > p?) <107

z;€lp z;€l'p
This value of 1072 is the maximal accuracy which can be obtained in
the Boltzmann solution because of the noise which is generated by the
Monte Carlo procedure.

4 The Boltzmann Solver

The numerical solution of the Boltzmann equations uses a time marching
technique, which splits the collision step and the transport step. The
original technique was developed at the University of Kaiserslautern
and was then upgraded at INRIA in order to take into account inelastic
collisions and heterogenecus boundary conditions.
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In this approach, the distribution f is represented by a discrete set
of particles with positions (z;), velocities (v;), and energy (e;). The
collision process is then simulated by a Monte Carlo technique. More
precisely, starting with a given distribution of particles (z;,v;,¢;), we
update this distribution at each time step by the following sequence of
operations ([2]):

1) On each part of I'g, we generate additional particles with a ran-
dom distribution in space and a Maxwellian distribution in velocity (as
predicted by the available Euler solution).

2) Each particle is advanced in space by the formula

T; = x; + v; AL

3) Each particle which collides with the body during step 2 has its
velocity and energy changed according to (13)-(18).

4) Each particle which has left Qp is erased.

5) The particles belonging to a same rectangular cell may collide with
each other. Within each cell, pairs of particles are built randomly. The
decision of collision for a given pair is made randomly depending on their
probability of collision. If collision occurs, the velocities and energies of
the colliding particles are updated according to the Larsen-Borgnakke
model, with collision parameters to be picked randomly.

This algorithm is stopped after a given number of time steps or if the
average number of particles reaches a steady value. When the algorithm
has converged, we still need to compute the flux (F™"1)~ in (24). At the
particle level, this is very easy. Indeed, by definition, the flux (F"+%)~
on a given segment I'seg of I'; it is the total flux of mass, momentum
and energy carried by the particles which enter (2 through I'seg during
the time interval [t,t + At], divided by the length As of I'sgg and the
length At of the time interval. If T denotes the set of particles which
enter Qg through I'seg during K consecutive time steps, this definition
of (F™*!)~ reduces to

]. ~
D i Rl I — § m;U; . 2
(F™ ) Irseg = aias .el Joa]? (25)
! m; (—2“ -0—57‘.)

5 The Euler Solver

The numerical solution of the Euler equations (20) can be achieved by
any of the solvers which have been proposed in the litterature. For ex-
ample, we have run recent numerical tests with a SUPG solver developed
by Dassault Aviation and based on a least square Galerkin formulation
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of the Euler equations (using entropy variables). The tests presented
herein are based on a Finite Volume discretization of the Euler equa-
tions and on a kinetic splitting of the fluxes at the cell interfaces.

In this approach, the domain Qg is partitioned into cells (C;), each
cell being associated to a node of an unstructured finite element trian-
gulation of Qg (Figure 2). On each cell C;, the equation (20) takes the

simple iterative form

Ty Il)j

Figure 2: Description of a Finite Volume cell

Figure 3: Description of the cell boundary

lo \
a4+l _ Af— % F,n,= 0. 26)
Ut =, +EZW Atgicy Fen (

Above a € N(i) denotes the vertex a of the cell C;. of length £,
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and normal vector n,, and F,.n(a) is the flux of conservative variables
passing through this vertex.
On each vertex, we split this flux F,.n(c) into

Fon(e) = FH(U).n(a) + F~(UM).n(a), (27)

with j the index of the cell which is outside a, under the notation

1 :

F(U).n(a) = / wn)| v | fur()dy,  (28)
v.n(a)>0 % 4 AT

and with a similar definition for F'~ (i{).n(a). Moreover, the variable U;

denotes the averaged quantity

1 p
Mi:mL’i pEu dx.

In (28), the values of p,u,T which are used are deduced from the
above values of U by interpolation. This interpolation procedure is
described in [4] and guarantees a second order accuracy in space.

On (26), the treatment of the boundary condition (21) is straight-
forward. For each vertex o on the boundary I'r, we replace (27) by (21)
with fimp given by (22) or (23).

The Euler algorithm (26) is stopped after a given number of time
steps or as soon as we have

b =l e
e S

6 Numerical tests

The numerical tests deal with the two-dimensiona] flow of a perfect di-
atomic gas (y = 1.4) flowing at hypersonic speed around an ellipse of
length 7.2m and thickness 2.18m. The domains Qg and Qg are rect-
angles as indicated on Figure 4. In the cases without overlapping, the
boundaries I & int and I'p are identical.

At infinity, the characteristics of the flow are

Use = 5672m/s, T, = 194°K,

corresponding to a Mach number M., = 20. The temperature of the
body is Ty = 1000°K. Such data are supposed to represent the flow
around a reentry vehicle at an altitude of 70km or more.
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Qg

I.\E'e:ct

Figure 4: Description of the Computational Domain

In all our tests, we have used the coupling algorithm of §3. This
algorithm has always converged in less than 15 iterations, and the (logy,
of the) residual was rapidly decreasing during the iterations as indicated
on Figure 5. At each iteration, the Boltzmann solution was taken to
be the solution obtained after 300 steps of the time marching algorithm
described in §4 (with a CFL number equal to 1) and the Euler solution
was the solution obtained after 500 time steps of algorithm (26) (with a
CFL number equal to 1.2).

As a reference solution, we have first computed the solution of the
Euler equations on the whole domain {2, at zero angle of attack, using
an unstructured adapted mesh of 11 432 triangles. This solution was
computed in 12A of CPU time on an Apollo DN 10 000 superworkstation.

The second calculation corresponds to the same flow, but computed
by the coupled model with overlapping domains. The mean free path was
A = 0, 1m in the Boltzmann region (Kn = 0.014), and specular reflexion
was imposed at the wall. The dimensions of the different domains were

Q = 30m x 30m,
Qp = 11.2m x 4.2m,
FE int = 10.2m x 3.6m.

For the discretization, we have used 5 400 triangles on €lp and
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7 700 rectangular cells for Qp, with an average of 25 particles per cell.
The computing time was 22h on the same machine (for 10 iterations),
that is approximately twice the time required for the Euler solution.
The numerical results are represented on Figure 6 (density contours),
Figure 7 (temperature contours) and Figure 8 (comparison of the density
profiles of the reference Euler solution and of the coupled solution). We
observe a very good superposition of all the different solutions (global
Euler, local coupled Boltzmann and coupled Euler).

The third calculation is the same as the second one but without
overlapping and with a very small Knudsen number (A=0.0lm, Kn =
0.0014). We have again represented density contours (Figure 9), tem-
perature contours (Figure 10) and density profiles (Figures 11 and 12).
In this case, we still have a perfect superposition of the shocks, but the
shock in the Boltzmann region is thinner, due to the very small Knud-
sen number. For such Knudsen numbers, it is impossible to solve the
Boltzmann equations on the whole domain ().

The last calculation is still done without overlapping, but considers
the more realistic case of a flow at a 30° angle of attack, with a mean
free path of 0.1m (Kn = 0.014) in the Boltzmann domain and full
accomodation at the wall. The different domains are represented on
Figure 13, and we have used 5 700 triangles in the Fuler domain and
3 000 rectangular cells in the Boltzmann region. The coupled solution
was obtained after 15 iterations and 30k of CPU time. The density
contours are represented on Figure 13, the temperature contours on
Figure 14, density profiles on Figure 15, and finally Figure 16 represents
the heat flux distribution on the body. The density profile corresponds
to a location where the shock crosses the interface but this has no effect
on the quality of the matching. The values of the heat fluxes are sensitive
to the discretization step in Qz and insensitive to the position of I'p.
This means that we must choose in this case a small Boltzmann region
with a very large number of cells.

7 Conclusion

The proposed technique of coupling Euler and Boltzmann by half-fluxes
is very natural in its principle and in its implementation. Our numerical
tests indicate that this coupling leads to very consistent results at low
Knudsen numbers. We also observe that the coupling algorithm seems
to converge independently of the boundary conditions at the wall, inde-
pendently of the discretization step and independently of the position
of the interface and of the amount of overlapping.

This coupled approach allows to study hypersonic flows at low Knud-
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sen numbers, this at a reasonable cost (because it does not use a kinetic
model everywhere in the domain) and with a good physical accuracy (be-
cause it uses a kinetic model in the boundary layer and in the afterbody
region).

This approach must now be developed in three directions:

e automatic definition of the Boltzmann and Euler regions, which
will require the introduction of mathematical criteria assessing the
validity of the Euler model at a given point,

e replacement of the Euler equations by the Navier-Stokes equations,
in order to be able to treat viscosity effects in the domain Qg,

e implementation in three-dimensional configurations.

Observe that these three-dimensional calculations will require large
computer resources. The amount of memory and of CPU time which
will be needed is at least three times more than what is required by a
standard three-dimensional Euler calculation. The proposed coupling
strategy does not reduce the computing time of the standard models of
Computational Fluid Dynamics but it extends their domain of applica-
tion to more rarefied regimes.
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Figure 9: No overlapping: log of density

Figure 10: No overlapping: temperature
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Figure 11: No overlapping: log of density profiles at midbody

L 1 1 L. Il I

-15. -5, 5 15.

Figure 12: No overlapping: log of density profiles in the wake
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Figure 13: No overlapping and angle of attack: log of density
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Figure 14: No overlapping and angle of attack: temperature
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Figure 15: Density profile with an angle attack
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Figure 16: Heat flux distribution



