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Implementafion of Domain Decomposition Techniques
on nCUBE2 Parallel Machine
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ABSTRACT. In this paper some aspects related to the parallel implementa-
tion of the Dirichlet-Neumann procedure for solving bidimensional elliptic
problems with domain decomposition techniques are described. In order to
asses the efficiency of the implementation on a parallel distributed memory
computer, elapsed times and speed-up factors are considered. Their depen-
dence upon the number of processors involved, the degree of the polynomials
and the kind of linear system solver used in the spectral approximation of

the problem is also discussed.

1. Multidomain formulation of the mathematical problem
We are interested in solving the following elliptic boundary value problem
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where 2 ¢ IR? is an open bounded domain with boundary 6 such that:
N =TPuTNe, IPNrV¥e=0; a(r,y) 20V (z,y) €% a € c(9).
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The variationa) formulation of problem (1) and related results for the exis-
tence and uniqueness of the solution can be found for instance in 2]

In order to obtain a multidomain formulation of problem (1), the compu-
tational domain €2 is partitioned as in Fig. 1 into M nonoverlapping subdomains
Q,

i =1,..,M, such that Q@ = UM, Q;, Ty = 0Q; N 0Qiys, @ = 1,...,M —1 and
r'=uM'T,.

Let us denote by u; = u|g, i = 1,.., M, then problem (1) becomes

Lu;=—Au; +ou;=f iy i=1,.,M

U = ¢ on PN o
o =¢ on T'Ne M o8

with the following regularity conditions of the solution on the interface:

3) w=uyionly i=1,...,M—-1 (continuity of the solution u)
Ou;  Ouy .
(4) 81:/ = %1— nl;, i=1,..., M —1 (continuity of the flux)
0 I, Tt
a [T |
1 2 3 QM

Fic. 1: STRIPWISE SUBDIVISION OF {).

Similar approaches to the partitioning of domains have been dealt with by,
for instance, Max Dryja and Olof B. Widlund. A complete description of domain
decomposition methods, we refer to in this paper, can be found in [4].

The solution of the multidomain formulation (2)-(4) can be carried out de-
coupling the problem on §;, with i odd, and on (), with 4 even, and assigning
transmission conditions as follows:

- Dirichlet condition (3) to the problems on ; with ¢ odd
- Neumann condition (4) to the problems on 2; with i even.

In this way an iterative scheme. known as Dirichlet/Neumann procedure
(D/N), is produced.
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On each subregion €2;, ¢ = 1,..., M the numerical approximation of problem
(2) is carried out by using spectral collocation methods (see [3], cap. 2).

2. The implementation of Dirichlet/ Neumann scheme

Referring to a partition of Q as in Fig. 1, the solution of problem (2)-(4) by
means of the D/N procedure can be implemented, step by step, as follows:

Step 1 Construction of matrices on each Q;, i=1,..., M

Step 2  Solution of Dirichlet problems on ©;, ¢ odd, and evaluation of the inter-
face conditions

Step 3 Solution of Neumann problems on £2;, 4 even
Step 4 Relaxation on T of the solutions computed in Step 2 and Step 3
Step 5 Redo from Step 2 until convergence.

The computations involved in the previous scheme can be carried out fol-
lowing the natural large grain parallelism suggested by the scheme itself. More
precisely in Step 1 M different processor elements can simultaneously compute
the matrices associated to M different subdomains with degree of parallelism
equal to M.

In Step 2 and in Step 3 M/2 processor elements can solve independently all
the Dirichlet problems as well as the Neumann problems. We remark that Step
3 must follow Step 2, so the degree of parallelism of these steps is /2. Step 4
and Step 5 are devoted to the evaluation of the new Dirichlet conditions and of
convergence condition respectively. So they can be carried out by the processor
elements devoted to the solution of Dirichlet problems.

This scheme was implemented on a parallel distributed memory machine
using macrotasking techniques following the natural mathematical parallelism
of the D/N procedure. In this way each subproblem (on Q; ) is allocated to a
different processor: for example processors with odd identification number are
devoted to Dirichlet problems, while processors with even identification number
are devoted to Neumann problems. Each processor P, must construct the matrix
related to the subproblem on £; and solve the linear system arising from spectral
approximation with a direct (LU factorization) or iterative (Bi-CGStab) method.
Obviously the execution of all Dirichlet {(Neumann) problems can be carried out
concurrently.

We point out that in our approach the parallelism is achieved at the math-
ematical level with regard to the D/N algorithm. whereas the linear system
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solvers (both direct and iterative) inside each subdomain are implemented in a
sequential mode.

Data structure, too, was splitted on the local memory of the different pro-
cessors, so the execution of the algorithm requires information exchange among
the processors. Precisely, odd processors must send the right-hand side of the
Neumann equation, computed in Step 2, to even processors. On the contrary
even processors must send the odd processors the solution on interface computed
in Step 3 and their contribution to the evaluation of the relaxation parameter
(Step 4). The exchange of information requires processors synchronization and
it doesn’t allow the parallel execution of Steps 2-3 and Steps 3-4.

3. Numerical results

The parallel machine used for the numerical experiments was a nCUBE2 hyper-
cube computer, hosted by a SUN 4/330 Sparcstation. The cube consists of 16
processor elements with 4 Mbytes of local memory each. This kind of machine is
equipped with a high speed (2.22 Mbytes/sec of rate) hardware message routing
which allows direct pass through of messages.

In order to evaluate the performances of the D/N algorithm described in
the previous section we introduce in addition to the usual speed-up factor S, =
% (T} and T, = elapsed time to run the algorithm on one and p processors
respectively), the so called maximum expected speed-up (see [1])

M
p1(CP) + 2% pa(CP)

S mazr —

where py (CP) is the relative cost (in percent of the total CPU-time) of the
part of the progran with degree of parallelism equal to the number of subdomains
(i.e. processor elements) M and p» (CP) is the relative cost of the part with
degree of parallelism equal to M/2.

The numerical experiments differ for the number M of the subdomains (and
processors) involved and for the degree N of the polynomial used in the spectral
approximation of the elliptic boundary value problems on each €;.

The linear systems A;u; = f;, # = 1,..., M arising from spectral approxima-
tion are solved on each Q; using both direct and iterative methods.

The use of direct methods allows the construction and factorization of the
matrices A; to be carried out once at the beginning of the procedure (Step 1).
The direct solver implemented was Doolittle LU factorization. In this case, if
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(N +1)? is the number of d.o.f. in each ;, the computational cost of the factor-
ization is O(N?f;) floating point operations for each matrix A;. The factorization
of the matrices can be carried out, as already said, concurrently on M different
processors and with parallelism equal to M. At each iteration of the D/N al-
gorithm, the triangular linear systems on each subdomain are solved by means
of backward and forward substitution. The computational cost of this step is
O(N*) floating point operations per subdomain and the degree of parallelism
is M/2. Then we observe that the most expensive part of the computation is
carried out with degree of parallelism equal to M.

The iterative method we used to solve the M linear systems was the pre-
conditioned Bi-CGStab (see [5]). As preconditioning matrices we used the five
diagonal finite difference matrices approximating the same elliptic subproblems.
In this case, in Step 1 one can only perform the construction and factorization
of the preconditioners with a computational cost equal to O(2N?) floating point
operations. Then at each iteration of the D/N algorithm some Bi-CGStab iter-
ations are needed on each subdomain. One Bi-CGStab iteration costs O(8N?)
floating point operations and so the most relevant part of the computation is
carried out with a degree of parallelism equal to M/2.

In Figg. 2 and 3 the speed-up factors obtained using both the direct and
the iterative solvers are shown. Bars stand for real speed-up S, and lines stand
for maximum expected speed-up Spaz. According to previous remarks, both 5,
and Sy,q Obtained using the direct solver are higher than those obtained using

the iterative solver.

The different values of the speed-up factors obtained can also be explained
by the need of information exchange due to the distributed memory architecture.
Although the amount of data to be exchanged is the same both in direct and
iterative solver, the iterative method might require different numbers of iterations
depending on the boundary conditions used on each domain. In this case the
parallel execution needs longer synchronization times to be spent waiting data
from domains requiring more iterations. On the contrary the direct method
allows a better synchronization among the processors, since the forward and

backward resolution is independent of the domain.

The numerical experiments point out that, as predicted by the theory [4].
the number of iteration NIT of the D/N procedure is independent of both the
polynomial degree N and the solver used on each subdomain. Moreover NIT is

increasing as a function of the number A of subdomains.
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FIG. 2: SPEED-UP FACTOR OBTAINED USING A DIRECT SOLVER.
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FIG. 3: SPEED-UP FACTOR OBTAINED USING AN ITERATIVE SOLVER.
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As far as the elapsed time is concerned, it can be pointed out that, following
the structure of the implemented algorithm, the direct solver is more convenient
than the iterative one for small values of N (N < 8) as well as for large values
of NIT.

More details about the implementation, the numerical results and the per-
formances of the procedure can be found in [1].

4. Conclusions

The main interest in this work was to asses the efficiency of parallel distributed
memory architectures with regard to the implementation of the wellknown D/N
algorithm. This kind of implementation seems to be very effective in the solution
of differential problems. So the treatment of more complex geometries (such as
subdivisions with internal cross-points) could be interesting in order to extend
the procedure to more general problems.

A second improvement could be the implementation of the D/N procedure
with a finer grain parallelism. It requires the use of parallel solvers for the linear
system on each subdomain. This could increase the amount of the information
to be exchanged between the processors, reducing the global performance of the
algorithm. So the choice and the implementation of the inner solver become a
crucial point for an effective use of this method.
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