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Uniform Convergence Estimates for Multigrid
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than Full Elliptic Regularity
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ABSTRACT. In this paper, we provide uniform estimates for V-cycle algo-
rithms with one smoothing on each level. This theory is based on some
elliptic regularity but does not require a smoother interaction hypothesis
(sometimes referred to as a strengthened Cauchy Schwarz inequality) as-
sumed in other theories. Thus, it is a natural extension of the full regularity
V-cycle estimates provided by Braess and Hackbusch in [2].

1. Introduction.

In this paper, we provide some new convergence estimates for multigrid algo-
rithms. In recent years, there have been many advances in the understanding of
multigrid algorithms (e.g., see {1]-[3], [5], [6], [9], [11], [12], [15], [17]-{19]). Two
apparently different analytical approaches have been developed. Historically, the
first used a two level error recurrence and proceeded to develop estimates for the
multilevel case by repeated application (cf. [1], [12]). The second approach ex-
pands the fine grid error in a product which reflects the effect of every coarser
grid [6]. This approach has been effectively applied even without the use of
explicit regularity assumptions for the underlying differential equation.
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As far as we know, the verification of the hypotheses for the first approach
mentioned above requires the use of regularity properties for the underlying
partial differential equation. The simplest example is that of a second order
elliptic operator L on a domain £ in R™ with Dirichlet boundary conditions.
Let u be the solution of

Lu=f in £,

1) u=0 on Of).

Regularity results of the form

(1.2) lulliya < ClFl-11a

are required to apply the earlier theories. Here ||-||, denotes the norm in the
Sobolev space of order s (cf. [13]), C is a positive constant and a € (0,1]. The
shift @ is not arbitrary but depends on the smoothness of the coefficients defining
L as well as the boundary 2. Early works on multigrid showed that the W-cycle
multigrid algorithm applied to discretizations of (1.1) converged for any a with a
uniform rate of reduction provided that sufficiently many smoothings were used
on each grid level. Subsequently, Braess and Hackbush [2] obtained uniform
convergence estimates for multigrid V-cycle and W-cycle algorithms (with one
smoothing iteration per level) applied to discretizations of (1.1) if the coefficients
and the domain were such that (1.2) held with @ = 1. Estimates for V-cycle
algorithms with @ < 1 and one smoothing per iteration using the first analysis
were provided in [3], [11] but only with deterioration depending on the number
of levels.

The second type of theory does not necessarily depend on explicit regularity
estimates. Earlier results of this type were given in [10], [16] and provided reg-
ularity free estimates for the fwo level case. Extensions to the multilevel case
required different techniques and were provided in [6]. The analysis given in [6]
gave a second technique for proving multigrid estimates even though the esti-
mates developed there were not independent of the number of levels. The theory
showed the crucial relation between the multigrid algorithm and its additive
counterpart, e.g. the algorithm described in [7].

Subsequently, new techniques were being developed to analyze additive multi-
grid algorithms. In particular, {14] provided uniform estimates for the additive
method of [7] by using Besov space techniques. Concurrently, [20] proved a uni-
form upper estimate for the additive algorithm by utilizing special properties of
the application of finer grid smoothers on coarser grid functions.

The work of [20] motivated the analysis of [5] which provided uniform esti-
mates for V-cycle algorithms with one smoothing per level in many applications
with o < 1. It was also shown in [5] that the uniform lower estimate for the
additive algorithm given by [14] could be proved provided that some elliptic
regularity held, i.e., (1.2) holds with a > 0. The analysis in [5] depended on
smoothing interaction conditions similar to those proved in [20] for the standard
application.

The purpose of this paper is to show that uniform multigrid estimates for
the V-cycle algorithm with one smoothing per iteration can be proved under
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the assumption of (1.2) without the smoothing interaction condition. Thus, the
results of this paper generalize those of [2] to the case when (1.2) only holds for
0 < a < 1. The techniques also extend to the case of local mesh refinements as
defined in [7].

The remainder of this paper consists of two sections. In the first, we define the
multigrid algorithms following the development in [3]. In Section 3, we present
the multigrid analysis.

2. The multigrid algorithms.

In this section, following [3], we describe the symmetric multigrid algorithms.
‘We mention some basic recurrence relations which play major roles in the analysis
of the methods and are proved elsewhere. For convenience, the algorithms are
developed in an abstract Hilbert space setting. The results most naturally apply
to finite element multigrid

algorithms but can also be applied to certain formulations of finite difference
multigrid algorithms. These applications are discussed in [3], [6] and [7].

Let us assume that we are given a nested sequence of finite dimensional vector

spaces
M, CM,C... CM]'.

In addition, let A(:,-) and (-,-) be symmetric positive definite bilinear forms on
M;. The norm corresponding to (-,-) will be denoted ||-||. We shall develop
multigrid algorithms for the solution of the problem: Given f € M, find v € M;
satisfying

2.1) | A(v,¢) = (f,¢) for all ¢ € M;.

To define the multigrid algorithms, we shall define auxiliary operators. For
k=1,...,7j, define the operator Ay : My — My by

(2.2) (Agw, ¢) = A(w, @) for all ¢ € M.

The operator Ay, is clearly symmetric (in both the A(-,-)
and (-,-) inner products) and positive definite. Also define the projectors
Py : M; — My, and operators Q : M; — My by

A(Prw, ¢) = A(w, P) for all ¢ € My,

and
(Qrw,¢) = (w,¢)  forall ¢ € My.

To introduce smoothing into the multigrid algorithms, we shall use “generic”
smoothing operators Ry : Mg +— Mg, for k = 2,...,]. Examples of these
operators in standard applications are given in [4]. The properties which they
satisfy will be discussed in the subsequent analysis. We set Ry = Al‘l, ie., we
solve on the coarsest space. In addition, we set R: to be the adjoint of Ry with
respect to the inner product (-,-).

The simplest symmetric V-cycle multigrid operator By : My — M}, is defined
as follows.
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ALGORITHM 2.1. Set By = Al_l. Assume that By_1 has been defined and
define Byg for g € My, as follows:
(1) Setz'=Rig.
(2) Define z* = z* + Bi_1 [Qr—1(g9 — Arz')].
(3) Set Brg = 2 + Ry(g — Arz?).

The standard multigrid algorithm is often defined as an iterative process. It
is shown in [5] that the reduction matrix associated with this process is equal
to I — B;A; where B; is given by Algorithm 2.1. Because of this relation,
results which we later provide for Algorithm 2.1 immediately imply contraction
estimates for the corresponding multigrid process. Moreover, the evaluation of
the operator Qp—; is avoided in the implementation of Step 2 by the suitable
choice of the smoother Ry, (cf., [4]).

Let Ty = Py and Ty = Ry APy, for k=2,...,j. It was shown in [6] that the
error reduction operator associated with Algorithm 2.1 (the standard multigrid
algorithm) can be written

- (I-BjA;) = (I~ Tj)(I = Tj_y)...(I —To)(I - T3)
: I-T5)...(I - T )T - T]).

Here, Ty = R}, Ay Pi, which is the adjoint of T} with respect to the inner prod-
uct A(-,-). Identity (2.3) depends upon the assumption that the subspaces are
imbedded and that one form is used to define the operators on all levels (see
(2.2)). Equality (2.3) holds on the space M;.

The purpose of this paper is to provide estimates for the multigrid contraction
number, i.e., estimates for the quantity § satisfying the inequality

(2.4) |A((I — BjAj)u,u)| < §A(u,u) for all u € M;.

Let E; = (I - Tj)...(I — T2)(I — T1). By (2.3), § is square of the norm of the
operator EY or equivalently Ej, i.e.,

§= sup A(Ejv, Ejv)
vEM; A(’U7’U)

3. Multigrid analysis

We prove the main theorem of the paper in this section. Uniform convergence
estimates for the multigrid V-cycle algorithm will be shown to hold provided
that a number of abstract conditions are satisfied. Let A; denote the largest
eigenvalue of the operator Ay and for any real s, let lIl-l, denote the norm on M;
defined by

loll? = (430, v).

Note that
loll, = A(v,0)**  and  Jjolly = ||v] .
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We require that
(C.1) There exists positive constants v; < 72 < 1 such that

Y1 Ak+1 < Ak < Y2 Akt1-
(C.2) There exists « € (0, 1] and positive constants C; and C3 such that

(31) (A]];_anuv Qku) <G ”u”i—aﬂ
and

(3.2) NI = Pe—r)ul?_, < CoA®lul?  for all u € M;.

The first condition above is a natural assumption which is often satisfied pro-
vided that A(-,-) and (-, -) are suitably scaled. In many applications, the operator
Ay, gives rise to a scale of norms on M}, which are uniformly equivalent to a scale
of Sobolev norms. Thus, (3.1) often follows from results concerning bounded-
ness of the projector @ with respect to appropriate Sobolev norms. Note that
if (3.1) holds for o = 0, then it follows for a € (0,1) by interpolation. Inequality
(3.2) is often used in the proof of the so called “regularity and approximation”
assumption (cf. [3]).

The first uniform convergence estimates for the V-cycle algorithm were due to
2] and held only in the case of & = 1, i.e., if full regularity and approximation or,
equivalently, the “approximation property” of [12] was satisfied. Alternatively,
uniform convergence estimates have been obtained for the multigrid V-cycle algo-
rithm under additional assumptions concerning the interaction of the multilevel
spaces (see, Theorem 3.2 and (3.5) of [5]). This interaction property is some-
times referred to as a strengthened Cauchy Schwarz inequality. Our theorem
below shows that uniform estimates for the V-cycle algorithm hold with less
than full regularity without any additional assumptions concerning the interac-
tion of the approximation spaces. Thus, it provides a generalization to the result
of [2] to the case of a < 1.

The final assumptions which we shall impose are on the smoothing operator
and are typical. Let Kj = I — Ry Ay and K = (I — RLAg). For k=2,...,j,
we assume that Ry satisfies

(R.1) There is a constant Cg > 1 which does not depend on k such that the
smoothing procedure satisfies

2
3.3) - I—I;Ll < Cr(Ryu,u) for all u € M.
k

Here Ry = (I — K;Kx)A;' . Note that (3.3) holds with Cg = 1 for
k=1 since Ry = A7
(R.2) There is a constant § < 2 not depending on k such that
(3.4) A(Tyv, Tev) < 0A(Tkv,v) for all v € M.

Conditions under which Jacobi and Gauss-Seidel smoothing operators satisfy
Assumptions (R.1) and (R.2) were provided in [4]. They are valid for many
standard applications.

We can now state and prove the theorem for estimating 6 in (2.4).
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THEOREM 3.1. Assume that (C.1), (C.2), (R.1) and (R.2) hold. Then (2.4)
holds for 6§ < 1 not depending on j.

Before proving the above theorem, we prove the following lemma.

LeEMMA 3.1. Assume that (C.1) and (C.2) hold. Then
/ 2
Z (P = Quyull; < €10 (22 — VIl orallue M.
PRrROOF. Let u be in M;. By the definition of Ay and (C.2),

J J
D 1P — Quull =Y (Ar(Pk — Qi)u, (Pr — Q)u)
k=1

k=1

J
< AR (AT(Pe — Qi)u, (P — Qo))
k=1
J
=) A2 (AL Qx(Py — Du, Qi(Pr — Du)
k=1

3
<C Y NI -Poyulf_,
k=1

Using the identity
J
(I-P)= Y (B~P-y)

I=k+1

and the Schwarz inequality gives
7 2
D (P — Qu)ull?
k=1

J J J
Z > > MNP = Pa)ully_o | (P~ Pre1)lly_y, -
k=1 l=k+

+1m=k+1

It is easy to see that (P, — Pi—) is a projector and hence (C.2) implies that
: 2

> 1P~ Qu)ulf?

k=1

aey 3 3 (2

k=1 l—k-i-l m:k+1

< CICZ Z Z 2 (l+m—2k)a/2 ”(.F'[ })Z 1)U”1

k=1l=k+1m=k+1

a2
) 1P~ Pres)ully (P = Pracs)ull,
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We used (C.1) and the arithmetic geometric mean inequality to derive the last
inequality above. Summing over m and subsequently changing the order of
summation gives

a/2 J -1
Z 1P = Qeully < CICZ( a/2) Z (B = Pri)ull? Z’Yg-k)a/z
k=1 — £
a/2 2
G0 2op) SR - Pl
=2
a/2 2
< G0, (-—7—7/—2*) Alu,u).
1-m,

This completes the proof of the lemma.
We next prove Theorem 3.1.

PRrROOF. Let Eg =1 and for £k =1,2,..., set
(3.5) Er=(I—-T%)Eg—_1.

Let u be an arbitrary vector of M;.
To prove (2.4), it suffices to show that

A(u, u) < C[A(u, u) — A(E;u, Eju)).

In the above and subsequent inequalities, C' denotes a generic positive constant
which will possibly take on different values in different occurances. It was shown
in the proof of Theorem 3.2 of [5] that

J
(3.6) A(u,u) — A(Eju, Eju) = Y A((2] — Ty) Ex—1u, Te Bg—_1u).
k=1

Consequently, it suffices to show that

J
(3.7) A(u,u) < C Y A((QI - T) Ey—1u, Tr By _1u),
k=1

with C independent of j.
It is shown in the proof of Theorem 1 of [6] that

J
Alu,u) = Z A (B—1u, (Qr — Qr—1)u)
(3.8) =

+ 3 A(TiE-1u, (I - Qi)u) + A((2I — Ty )u, Tyw).
k=2
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For the first sum of (3.8), we have

J
Z (ApPrEy_1u, (Qr — Qr—1)u)

k=2

J
Z A (B—19, (Qr — Qp—1)u)
(3.9) '*=2

J
< D 1 AkPeByull 11(Qk — Qr—1)ull.

k=2

We have not assumed approximation properties for Qj however it follows from
[8] and (3.2) that for u € M;,

I = @u)ull = inf ffu—vl] < CXY* ful,:
v k
Consequently, using (C.1),
)\1/2 ”(Q . 1/2
" k= Qr-1)ull = X" 1(7 ~ Qr-1)(Qr — Qr—1)u]l < C|(Qk — Qr_1)ull,
< & (I~ Quully + Py — Quca)ul, + (P - Pecul, ).

Summing and applying Lemma, 3.1 gives

J J
D All(@k ~ Qu—v)ull® < C[A(,u) + > A((Py — Piy)u, u)]
(3.10) = =
< CA(u,u).

Using the Schwarz inequality, (3.9) and (3.10) yields

Jj
Z A(Br-1u,(Qr — Qg—1)u)

k=2

j 1/2
< 2 (LA AcBeul?)
k=2

By (R.1),

A Ak PrEr—yul? < CRA(I — K Ki)PyEy_yu; PyEy_1u)
= CRA((2I - Tk)Ek—luaTkEk—lu)-

Combining the above inequalities gives

J
’Z A(Bi1,(Qu ~ Qu1)u)
(3.11) *=2

j 1/2
< CAY?(u,u) (Z A((2I ~ Ty)Ep—1u, TkEk—lu)) .
k=2
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For the second sum of (3.8), by Lemma 3.1,

j-1
> A(TEi—1u, (I — Qu)u)
k=2

j—1 1/2 1/2
(312 < (S ATEL -1, T ) (Z (P~ Qk>u||1)

k=2

j—1 1/2
S C (z A(TkEk_lu, TkEk_lu)> A(u, u)l/z.
k=2

It follows from (R.2) that

(/)
(8.13) A(TyEg_1u,TpE_1u) < mA((ﬂ" T ) By 1u, Ty By 1u).

Combining (3.8), (3.11)—(3.13) gives that A(u,u) is bounded by

i1 1/2
CAY?(u, u) ( 3 A((2] - T) E-1u, TeBr-yu) + A((2T — Ty)u, Tlu))
k=2

from which (3.7) easily follows. This completes the proof of the theorem,

REMARK 3.1. We considered the case of one smoothing in Algorithm 2.1 since
it is the most interesting algorithm. Uniform convergence rates for algorithms
involving more smoothings easily follow from the above analysis (see [6]) but do
not guarantee any improvement in convergence over the case of one smoothing.
Similar estimates hold in the case of algorithms with more than one correction
step, e.g., the W-cycle algorithm.

REMARK 3.2. The above techniques easily extend to provide uniform esti-
mates in the case of locally refined meshs as developed for the second order
application in [7]. Rather than try to extend the abstract formalism of this sec-
tion, we will restrict our discussion to the local mesh refinement application of
[7]. The assumptions (C.1) and (C.2) are only required to hold for the larger
spaces Mj, (and analogous operators Ap, Qr, and Py) defined by uniform refine-
ment on the entire domain. Note that the analogous version of Lemma 3.1 holds
on these larger spaces. Smoothing subspaces M, are defined to be the functions
in My, with support in the k’th refinement region (as in [7]). The k’th multigrid
space is defined to be the sum of the srnoothmg subspaces up to k. In the local
refinement application, Ry : My — My, and is such that Ry = RiQ) where Qx
denotes the (-, -) projector onto M,,. One replaces Q in (3.8) by the operator Qg
used in the proof of Theorem 5.1 of [5]. The remainder of the proof of Theorem
3.1 follows easily from the inequality

NI - Qu)ull <C||(I—Qr)ul|  for all u € M;.
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