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A Three-field Domain Decomposition Method
F¥. Brezzi, L.D. MARINI

Abstract. We present a three-field formulation for second order linear elliptic
problems well suited for parallel implementation. Great generality is allowed on
the choice of discretizations: different methods can be used from one subdomain
to another. A preconditioner is also presented, very useful to deal with non
symmetric problems and unstructured subdomain decompositions.

1. Introduction

The aim of this paper is to present a three-field formulation for linear elliptic
problems which is particularly well suited for domain decomposition methods.
The formulation is inspired by the hybrid formulation of Tong [10] for elasticity
problems, the main difference being that we work here at the macro-element
(=subdomain) level instead of working at the element level. The effect of this
is that we obtain a new formulation of the continuous problem which can then
be discretized in many different ways, including the possibility of using different
methods (or the same method with different meshes) from one subdomain to
another. To perform this, proper compatibility conditions, often not straight-
forward, have to be satisfied. We circumvent this problem by introducing a
stabilized formulation (inspired by [3]) which essentially consists in adding suit-
able terms that do not alter the consistency of the scheme. In this way, we get
a fairly general framework in which most of the domain decomposition methods
using non overlapping subdomains can be reinterpreted. We also propose a pre-
conditioner that seems particularly appealing for dealing with non symmetric
problems and unstructured decompositions.
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2. The three-field formulation
Let us consider, for the sake of simplicity, a polygonal domain Q c IR? split into
a finite number of polygonal subdomains Oy, (k =1,.., K). Let

o

=% ; Tw=0% ; =k (2.1)
k k

Let A be a linear elliptic operator of the form
7] Ou u
Au = zi:{zj:(_é?j(aij(m)a_ﬁi +bj(z)u)) + Ci(ﬂf)a—%} + d(z)u. (2:2)

We assume that the coefficients a;;, b;, c;, d belong to L*(Q) and are smooth
in each 2, and we consider the bilinear forms associated with A in each Q,
that is,

foru,ve HY Q) :

- (Dubv Oy, Ou (2.3)
ag(u, v) 1= /(;k {;(;(au 9z a; + b,uamj) +c; 8xiv) + duv} dz.
We also set, for u, v € [, H(Q)

a(u, 0) == 3 ax(u, 0); (2.4
k

for the sake of simplicity we also assume that there exists a constant & > 0 such
that

a(v, v) > a][v”fql(g) Vv € Hy (). (2.5)

From now on we are going to use the following notation: (.,.) will be the usual
inner product in L%(Q); for k = 1,...K, (-, )& will be the inner product in
L?(Q4) and < .,. > will be the inner product in L%(T}) (or, when necessary,
the duality pairing between ‘%(I‘k) and H %(Fk)). Similarly, we will use ||.||s
for the H*($2) norm, and ||.|sx, |||.||ls,x for the H*() and H*(T';;) norms
respectively (k =1,..., K). Let us now introduce the spaces that will be used in
our macro-hybrid formulation. For k =1, ..., K we set

Ve:i=H'(Q%) 5 M= H 5(Ty). (2.6)

We then define
ve=[[w ; M:= 11 M, : (2.7)
k k
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and
®:={p e L*(Z) : v e HXQ) with ¢ = vz} = Hy(Q)z, (2.8)

with the obvious norms

loly =S 1¥E, (v eV; o= (0., 0%)); (2.9)
k .
lal =Py, (WM p=(ue X))y (210)
k
lolle =t llvll; | ve HAQ), vz = v} (2.11)

For every f, say, in L?(£2), we can now consider the following two problems:

find w € Hy(f) such that
L (2.12)
a(w, v} = (f,v) Vv € Hy(Q)
and
(find u €V, A € M and ¢ € ® such that
i) a(u,v)—z<z\k,vk>k= (f,v) YoeV
2
Vi) D <uEp—ut =0 YaeM (2.13)
k
i) Y <M, >p=0 Vp € @.
n k

Theorem 1 For every f € L?(f2), both problems (2.12) and (2.13) have a unique

solution. Moreover we have

uF=w inQ (k=1,..,K), (2.14)

b ‘9—“; only (k=1,...K), (2.15)
ony

v=w on % (2.16)

where w/dn¥ is the outward conormal derivative (of the restriction of w to Q)

with respect to the operator A.

Proof We refer to [6] for the proof. .
It is very important, for applications to domain decomposition methods, to re-

mark explicitly that the first two equations of (2.13) can be written as

EoB)— < M of >, = (f, 0" vk € Vi, VE
{ak(u,v) <X > = (v & 217)

< uf pF >p=< P, 1 >4 vuk e My, Vk.
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In particular, for all fixed k, assuming f and ¢ as data, (2.17) is the variational
formulation of the Dirichlet problem

k . .
{Au = f inQ, 218)

uk = ¢ on I'g,

where the boundary condition is imposed by means of a Lagrange multiplier
(that finally comes out to be A¥ = du*/9nk) as in Babugka [1]. Hence, for f
and 7 given, the resolution of the first two equations of (2.13) amounts to the
resolution of K independent Dirichlet problems.

Problem (2.13) can now be approximated in many different ways. Choosing
Vi, My, and &}, finite dimensional subspaces of V, M, ®, we can consider the
discretized problem
( find up, € Vi, Ay € My, and 1), € @3, such that
i) a(uh7v)_z<)‘isvk >k = (f,v) Vv € Vy

k

Y i) Y <uFun—uf =0 Vi € My, (2.19)
k
i) D <A, >p=0 Vo € ®p.
\ k

As an example, assume, for the sake of simplicity, that we have a global decom-
position 7j, of {) into finite elements w (say, triangles), which is compatible with
the macro-element subdivision (2.1) (in other words, for every w in 7, and for
every ()i, the symmetric difference (2 Uw) \ (2 Nw) has zero measure). In
this case, taking a finite element approximation V}, of H! (Q), one can set

Vi = Vh]ﬂk ; Vh = HV,:“ ; Ve =W, an(Q)

. 2.20

oh=Vys Mp = (Vlf|r,,)' ; Mh=HMi’f~ (320
It is easy to check that with these choices the solution of (2.19) is nothing else
but the standard finite element approximation of the solution of (2.12) by means
of the subspace f/',f In a more general case, it is clear that suitable inf-sup
conditions have to be assumed for V;, M}, and ®;, in order to ensure stability
and optimal error bounds for the discrete problems (2.19) (see [5]). However,
it is possible to stabilize (2.19), for general discretizations, by adding proper
stabilizing terms “a la Hughes” (see [3] or, more generally, [9]). In order to do
this, let us assume, as before, that we have a global decomposition 7;, compatible
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with the macro-element subdivision (2.1). The decomposition 73 induces then,
in a natural way, finite element decompositions of each £, of each I'y, and of
X. For the sake of simplicity we shall write 3 ;) and 3, for the sum over
those elements w (resp. o) belonging to € (resp. I'x). We shall also denote by
h, and h, the diameter of w and o, respectively. As far as the degrees of the
polynomials are concerned, we allow the maximum generality; the degree can
also change from one macro-element to another. Since V}, C V, the functions
vp, € V), must be continuous in . Similarly, the functions p, € &5 will also be
continuous on ¥, while no continuity is required on functions pp, € Mj,.

Remark 2.1: Our assumptions are much more restrictive than necessary. In
principle we can eagily adapt these ideas to more general subspaces, even allow-
ing different Galerkin methods (Fourier, spectral, wavelets etc.) from one £ to
another. However, as we shall see, the notation (more than the actual imple-
mentation) is already cumbersome in our simplified case, and would become too

heavy in a more general one. x
Note that, if u, A, 4 is the solution of (2.13), all the following equalities hold
Z Zhi(Auk ~ £, AvF)pa) = 0, (2.21)
k w(k)
S ho(AF — 80k fank, b — 8v* [8n5) 120y = 0, (2.22)
k o(k)
Z Zha(u’k - 1/)3 W)Hl(a’) = 0’ (223)
k o(k)

for any choice of piecewise smooth v, g, ¢. In view of that, we can substitute
problem (2.19) with the following expanded form

find (un, An, ¥r) € Vi X Mp X @ such that

S {an(uf, v)— < A, of >k + ) hE(Auf, AvR) 2+ (2.24)
k w(k)

=) kol - Buf |on%,, vk [0n8) 12(0) + (uf — Yr, vE) ()]} =

o(k)
=S N (fok+ iAW) Yo
k w(k)

> {< uhub —¥n >k +3 (M — Buk /Onfi, uf)2()} =0 Vi (2.25)
k o (k)

Z <Xk, on >k +Zha(ulfz —Yh@n)He) ¢ =0  Von. (2.26)

k a(k)
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Problem (2.24)-(2.26) has clearly a unique solution. We point out explicitly that
the regularized formulation (2.24)-(2.26) is still well suited for parallel imple-
mentation. Indeed, for ¢ and f given, the resolution of (2.24)-(2.26) amounts
to the resolution of K independent problems, each of them being a Dirichlet
problem with Lagrange multipliers treated with a variant of [3]. For an analysis
of the convergence of (2.24)-(2.26) we refer to [7], [2].

3. A preconditioner and numerical results

We already pointed out that the first two-equations of (2.13) can be interpreted
as K independent Dirichlet problems, one in each macro-element. We also noted
that the same will be true for every reasonable discretization of (2.13), as for
instance (2.19) with the choice (2.20), or directly (2.24)-(2.26). If we now elimi-
nate from the first two equations of (2.13) the unknowns » and A as functions of
¥ and f, and substitute in the third equation, we end up with a single equation
in the unknown ¢ of the type

Sy = G. (3.1)

For the discrete case the procedure is essentially the same, possibly, as for in-
stance for (2.24)-(2.26), with more difficult notation. In any case, we end up
with a problem of the form

Sp¥n = G, (3.2)

where the computation of G, and, for any given oy, of Syy, involves the solution
of K independent Dirichlet problems, one for each subdomain.

Remark 3.1 In the case of a finite element discretization such as (2.20) in (2.19),
Sh is nothing but the classical Schur complement [8]. n

In order to solve (3.2) with, say, conjugate gradient method, one faces two dif-
ficulties. The first one is due to the fact that Sj, is the discretization of the
operator S, which is linear and continuous from & to @' (and, in particular, is a
pseudo-differential operator of order one) [6]. Hence, we have to expect that Sy
has a spectral radius of order O(1/h). We therefore need a preconditioner acting,
very roughly speaking, as the inverse of a first order operator. Unfortunately,
it is easy to devise nice symmetric positive definite second order operators, but
is much less easy to do it with first order ones. See for instance [4] and the
references therein for several interesting attempts in this direction. The second
difficulty is the possible lack of symmetry. If the operator A in (2.2) is symmet-
ric, and a standard finite element approximation as (2.20) is used in (2.19), then
Sp. will be symmetric. However, if either A is not symmetric or a more general
(finite element) discretization is used, so that the stabilized form (2.24)-(2.26)
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has to be employed, S;, will not be symmetric. A possible way out [6] is to
precondition (3.2) in the form

SpT ' Sppn = SETy G- (3.3)
where T}, is a discrete second order differential operator, given for instance by

(Tatbhson) = Y > (¥h, 011 (0)- (34)

k o(k)

Note that, for any given 3, the computation of Sj ¢y amounts to the discrete
resolution of K independent Dirichlet problems for the adjoint operator A*.

We conclude this section with some numerical results, obtained using piecewise
linear finite element discretizations as (2.20) in (2.19). In Table 1 we report the
results for the problem Au = 0in (0,1) x (0,1), » = 0 on the boundary. In Table
2 the non symmetric case is considered: —Au + Bugy = 0in (0,1) x (0,1), u=10
on the boundary, and 8 = 10. In both cases the solution of (3.2) is obtained with
the preconditioned conjugate gradient method, where the preconditioner for the
Schur complement S, is taken as in (3.3)-(3.4). Subdivisions into K = 4 and
K = 16 square subdomains are reported; uniform finite element decompositions
into right triangles of mesh size h are used in each subdomain. We report the
average error reduction per iteration (AER) and the number of iterations (NIT)
necessary to reduce the initial residual by a factor of 10~* in the maximum norm.
The tables clearly indicate that the number of iterations and the average error
reduction depend on the number of subdomains but not on the mesh parameter.

h NIT, K =4 | AER,K=4 | NIT,K=16 | AER, K =16
1/10 8 22 12 A7
1/20 9 26 13 50
1/30 9 27 13 49
1/40 9 28 13 49
1/50 9- 28 14 52

Table 1. The symmetric case
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h NIT,K=4 | AER,K=4 | NIT,K=16 | AER, K =16
1/10 7 25 14 52
1/20 9 28 16 56
1/30 10 30 16 56
1/40 10 .30 17 58
1/50 10 .30 18 58

Table 2. The non symmetric case
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