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ON THE NUMERICAL SOLUTION OF THE HELMHOLTZ EQUATION
AT LARGE WAVE NUMBERS USING EXACT CONTROLLABILITY
METHODS.
APPLICATION TO SCATTERING

M. O. Bristeaul, R. Glowinski® and J. Periaux®

Abstract

The main goal of this article is to introduce a novel method for
solving the Helmholtz equations from Acoustics and two-dimensional
Electro-Magnetics. The key idea of the method is to go back to the origina}
wave equation and look for time periodic solutions. In order to find these
last solutions we essentially use a least squares/shooting method which is
closely related to exact controllability and to the Hilbert Uniqueness
Method (HUM) of J. L. Lions. From this formulation and by analogy with
other controllability problems we derive a conjugate gradient algorithm (in
an appropriate Hilbert space) which has quite good convergence properties.
Numerical experiments concerning the scattering of planar waves by convex
or nonconvex obstacles show the efficiency of the new algorithm,
particularly for air intake-like reflectors.

1. Introduction

Stealth technologies have enjoyed a considerable growth of interest
during these last five years both for aircraft and space applications. From
this point of view an interesting phenomenon
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has been taking place, namely Fluid Dynamics specialists becoming deeply
involved in Computational Electro-Magnetics, which makes sense after all
since there are many commonalities between these two topics (see, e.g. [1]).
Due to the very high frequencies used by modern radars the computation of
the Radar Cross Section (RSC) of a full aircraft using the Maxwell
equations is still a Great Challenge (see [2]). From the fact that boundary
integral methods are not well suited to general coated materials, field
approaches seem to provide an alternative which is worth exploring. -

In this paper we consider a particular application of the J. L. Lions
Hilbert Uniqueness Method (HUM) to the solution of the Helmholtz
equations obtained when looking to the monochromatic solutions of linear
wave problems. The idea here is to go back to the original wave equation
and to apply HUM in order to find its time periodic solutions. Indeed, this
new method is in competition with — and is related to — theé one where
one integrates the wave equation from 0 to +oo in order to obtain
asymptotically a time periodic solution; it is well known from Lax-Phillips
[3] that if the scattering body is convez then the solution will converge at
ezponential speed to the periodic solution. On the other hand, for
nonconvez reflectors (which is quite a common situation) the convergence
can be very slow; the method described in this paper substantially improves
the speed of convergence of the asymptotic one, particularly for stiff
problems where internal rays can be trapped by successive reflections.

2. The Helmholtz Equation and its Equivalent Wave Problem

Let us consider a scattering body B, of boundary 6B=47,
illuminated by an incident monochromatic wave of frequency f=k/27 (see
Fig. 2.1).

Figure 2.1
(u;: incident field)
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In the case of the wave equation utt—Au:O, the  Helmholtz
equation satisfied by the coefficient U(x) of e* tis given by

(2.1) AU + kU = 0 in R1\B (d=2,3),

(2.2) U=Gon~.

In practice, we bound Rd\ﬁ by an artificial boundary I' on which
we prescribe, for example, an approzimate first order Sommerfeld condition
such that

U | kU = :
(2.3) on T ikU = 0 on T}
now equation (2.1) is prescribed on 2 only, where § is this portion of Rd\ﬁ
between v and I'. In the above equations, U is the scattered field, —G is
the incident field; in general, U and G are complex valued functions.

System (2.1)—(2.3) is related to the T-periodic solutions (T=27/k)
of the following wave equation and associated boundary conditions

(2.4) uy — Au = 0in Q (=Qx(0,T)),
(2.5) u = g ono (=vx(0,T)),
(2.6) Qu 1 U= g onx (=Tx(0T)),

with, in (2.5), g(x,t) =g (x)coskt +gq(x)sinkt, where g; and g, are two real
valued functions obtained from the real and ima%inary parts (2; and G2 of
G. If we look for u:Re(elktU) (resp. u:Im(elk U)), then it is clear that g
satisfies (2.5) with

g(x,t) = G)(x) coskt — Gg(x) sinkt, (resp. g(x,t) = Gg(x) coskt +
G (x) sinkt).

The main goal of this article is to find periodic solutions to system
(2.4)—(2.6) without solving the Helmholtz problem (2.1)—(2.3).

In the following, we look for T-periodic solutions to systems such as
(2.4)—(2.6) where g is a smooth function of t defined over o such that g(0)
= g(T), g;(0) = g;(T), we look thus for u satisfying (2.4) —(2.6) and

(2.7) u(0) = u(T), u;(0) = u(T).
In this article we systematically use the notation ¢(t) for the
function x—p(x; t), for any function ¢ of x and t.
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3. Exact Controllability Methods for the Calculation of Time Periodic
Solutions to the Wave Equation

In order to solve problem (2.4)—(2.7) we advocate the following
approach whose main merit is t¢ reduce the above problem to an exact
controllability one, close to those problems whose solution is discussed at
length in, e.g., [4]—[9]. Indeed, problem (2.4)-(2.7) is clearly equivalent to
the following one:

Find e = {eo, el} such that

(38.1) Uy — Au=0inQ,
(3.2) u=gono,

du | Gu _
(3.3) $+—6—E—Oon2,
(3.4) u(0) = eg, uy(0) = €,
(3.5) WT) = e, uy(T) = e;.

Problem (8.1)—(3.5) is an ezact conirellability problem which can
be solved by methods directly inspired by the J. L. Lions Hilbert Uniqueness
Method (HUM). We shall not address here the existence and uniqueness of
solutions to problem (3.1)—(3.5); instead we shall focus on the practical
calculations of such solutions, assuming they do exist.

4. Least-Squares Formulation of Problem (3.1)—(3.5)

In order to apply HUM to the solution of problem (3.1)—(3.5) a
right choice for the space E containing e={e,, e;} is fundamental. We
advocate to take either

(4.1) E = H(Q) x L2(0)
or

(4.2) E = Vg x LX(Q),
where

Vg = {golsoeHl(Q), ely = g(O)}~

In order to solve (3.1)—(3.5) we use the following least squares
formulation (where y plays the role of u in (3.1)—(3.5)):

4.3 Mi J
(4.3) VHEIE (v),
with

(14) 30) = § [ 19601 — vo)? + Iy (1) — v, s, v = {vor vi}s
Q2
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where, in (4.4), the function y is the solution of

(4.5) Vit — Ay =00 Q,
(4.6) y = g on 0,

dy . Oy _
(4.7) 3 T =D
(4.8) ¥(0) = vo, ¥;(0) = Vi

The choice of J is directly related to the fact that the natural
energy E(-) associated to the system is defined by
8= §[ Uyy/2+19 jex.
Q

Assuming that e is solution of problem (4.3) it will satisfy the
following equation

(4.9) <J'(e),v> = 0, VvEE,,
where Egq=E if E is defined by (4.1), and where E0=VOXL2(Q) (with
Vo={plp€BL(Q), p|ly=0}) if E is defined by (4.2); in (4.9), <-->

denotes the duality pairing between E(’) and Eg (E(’): dual space of Ey). In
(4.9), 3’ denotes the derivative of J.

Problem (4.9) can be solved by a conjugate gradient algorithm
(described in Section 6); in order to implement this algorithm, we need to
be able to compute J ’(v), VveE; this is the object of the following Section
5.

5. Calculation of J'.

It can be shown that

<J(v), w> =JV(VO—y(T)).Vwodx—Jpt(O)wodx+Ip(0)w0dF
5.1) { Q Q r

~{—Jp(0)wldx~+-J‘(v1 —yi(T))wydx,Vw={wo,w; }€Eo,
Q Q

where, in (5.1), p is the solution of the adjoint equation
(5.2) Py — Ap=0inQ,

(5.3) p=20ono,
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dp _Op _
(5.4) -a-ﬁ——-g‘—;_()onz,
(5.5) p(T) = y(T) — vy,

with p, (T) defined by

(5.6) th(T)zdx = J' (y¢(T)—vy)zdl — J V(y(T)—vo)-Vzdx, Vz€V,.
Q r Q

Remark 5.1: Relations (5.1) and (5.6) are largely “formal”; however, it is
worth mentioning that the discrete variants of them make sense and lead to
algorithms with fast convergence properties.

6. Conjugate Gradient Solution of the Least-Squares Problem (4.3).

In this section we shall suppose that E is defined by (4.2). A
conjugate gradient algorithm for the solution of (4.9) is given then by

Step 0: Initialization
(6.1) e® = {e3, e‘l)}EE is given.

Solve the following forward wave problem

(6.2); vip — Ay =0 Q,
(6.2)9 vy =gono,

ay°® | 9y° _
(62)y  ¥O0) = & ¥3(0) = .

Solve the following backward wave problem

(6.3); p, — Ap® = 0in Q,
(6.3)9 p°® = 0 on o,

) o
(6.3)3 38% - 86% =0on L,

with p°(T) and p?;(T) given by
(6.3) p%(T) = yQ(T) — e,

(8.3)5 j pg(T)zdx = JpO(T)zdI‘ — J V(y°(T)—e3)-Vzdx, Vz€V,,
Q r Q
respectively.
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Define next g° = {g3, g(l)}EE:VOXL2(Q) by

(64); JVgS-Vzdx:JV(eg—yO(T))-Vzdx—J p‘t)(O)zdx+Jp0(0)zdI‘,
Q . )

T
VzeVy,
(6.4)y g} = p°(0) + ¢ — y2(T),
and then
(6.5) wl =g° O

For n>0 suppose that e, g%, w are known; we compute then their updates

en+1, n+1’ Wn+1 as follows

Step 1: Descent

Solve

(6.6), Vi — AV =0 Q,
(6.6) 72 =0 ono,

(6.6)5 36___)'_: + 6_?___:1 =0onX,
(66),  FU(0) = wh, ¥I(0) = wl.

Solve the following backward wave problem

(6.7); Py — AP" =0 Q,
(6.7)9 " =0 ono,

)
(6.7)3 —BT - 3{‘ = 0 on E,

with B(T) and ﬁlg(T) given by

67,  FNT) = THD) - wh,

(6.7)g J' ﬁltl(T)zdx = Jﬁn(T)zdF — JV(YH(T)—WS)-Vde, Vz€eV,,
Q r Q

respectively.

9
Define nezxt g" ={g2, g?}eVOxL“(Q) by
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(6.8)1 JVQ’%-VzdszV(wg—YH(T))-Vzdx—-J ‘ﬁItI(O)zdx
Q Q

+ [P0, Vaevo,
T
(6.8)y  E] =D"(0) + w] —¥H(T)

and then py by

©9) oo = [ (VbP+1e] %ax /[ (VER- Twh+Iwliax
Q Q

We update then e and g" by

6.10) Tl en _ , wn

611) g =g - pug™

Step 2: Test of the convergence and construction of the new descent
direction
1,2 _
Ifj (IVgg—H'z + |glll+ |“)dx/J(|Vg8]2 + lg?|2)dx < € take e:—.en+1; if
{ Q

not compute

1 1.2
612 = [(T g P/ [ (VeI g P
Q Q

and update w" by
(6.13) wit! = gn_I'1 + ypw® 0O
Do n=n+1 and go to (6.6).

Remark 6.1: Algorithm (6.1)—(6.13) looks complicated at first glance. In
fact, it is not that complicated to implement since each iteration requires
basically the solution of two wave equations such as (6.6) and (6.7) and of
an elliptic problem such as (6.8),. The above problems are classical ones
for which efficient solution methods already exist.

Remark 6.2: Algorithm (6.1)—(6.13) can be seen as a variation of the
method mentioned in Section 1; there, we integrate the periodically excited
wave equation until we reach a periodic solution. What. algorithm
(6.1)—(6.13) does is to periodically measure the lack (or defect) of
periodicity and use this measure as a residual to speed up the convergence
to a periodic solution. A similar idea was used in [10] to compute the
periodic solutions of systems of stiff nonlinear differential equations
(including cases where the period itself was an unknown of the problem).



ON THE NUMERICAL SOLUTION OF THE HELMHOLTZ EQUATION 407

7. A Finite Difference/Finite Element Implementation

The practical implementation of the above control based method is
straightforward. It is based on a time discretization by a centered second
order in time ezplicit finite difference scheme. This scheme is combined to
piecewise linear finite element approximations for the space variables; we
use mass lumping — through numerical integration by the trapezoidal rule
— to obtain a diagonal mass matrix for the acceleration terms. The fully
discrete scheme has to satisfy a stability condition such as At<Ch, where C
is a constant. To obtain accurate solutions we need to have h at least ten
times smaller than the wavelength; consequently, At has to be at least ten
times smaller than the period. If we assume that the number of iterations
to solve the least squares problem is independent of h and At {assumption
supported by numerical experiments), the solution of the Helmholtz
equation via the new approach involves a number of operations which — for
a given value of k — is proportional to the number of grid points; for this
estimate we do not take into account the time spent at solving the elliptic
problems such as (6.4);, (6.8);-

8. Numerical experiments.

In order to validate the methods discussed in the above sections we
have considered the solution of three test problems of increasing difficulty,
namely the scattering of planar incident waves by a disk, a similar problem
for a two dimensional ogive and finally the scattering of a planar wave by a
nonconvez reflector which can be seen as a semi-open cavity (a kind of —
very — idealized air intake).

First Test Problem: For this problem, B is a disk of radius .25 m, k=2nf
with f=2.4x10”Hz implying that the wavelength A is .125 m;, the disk is
illuminated by an incident planar wave coming from the right. The
artificial boundary T is located at a 3X distance from B, as shown in Figure
8.1, where we have also shown the finite element triangulation 9. used for
the calculation. This triangulation has 22,736 triangles and 11,588 vertices.
The mean length of the edges is A/14, the minimal value is A/38, while the
maximal one is A/7 (which is really at the limit of fineness if one wishes a
good precision). The value of At corresponds to 35 time steps per period.
To obtain convergence of the iterative method, 71 iterations of algorithm
(6.1)—(6.13) were needed, corresponding to 3mmlbs on CRAY2. For this
test problem where the exact solution is known we have compared on
Figures 8.2 to 8.4 the computed solution (—) to the exact one (. (we
have shown the real component of the scattered fields measured in three
different space directions (incident direction, opposite to incident direction,
orthogonal direction, respectively)). The convergence behavior has been
visualized on Figures 8.5 (decay of the cost function) and 8.6 (variation of

the gradient of the cost function).
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Second Test Problem: For this problem, B has an ogive-like shape defined
by axis parameters a=.6m and b=.16m, respectively. We also have
k=2xf with f=3GHz implying that the wavelength A is .1lm. The artificial
boundary is located at a 3\ distance from B, as shown on Figure 8.7. The
finite element triangulation has 14,224 triangles and 7,323 vertices, and is
also shown on Figure 8.7. The mean length of the edges if A/11, the
minimal length is A/29, while the maximal one is A/6 (which is the limit
for an acceptable accuracy). The value of At corresponds to 30 times steps
per period. The convergence of the solution algorithm for a zero-degree
incident monochromatic wave requires 89 iterations corresponding to
2mm13s on a CRAY2. The computed scattered fields are shown on Figures
8.8 (real component) and 8.9 (imaginary component); the space periodicity
of the solution is clear on these figures. As expected, the asymptotic
unsteady method provides the same solution which, for this convez body, is
reached exponentially.

Third Test Problem: For this problem, B is an idealized air iniake; it has a
semi-open cavity geometry defined by two horizontal plates (length 4) and
thickness A/5) and a vertical one (length 1.4) and thickness A/5). We have
k=27f with f=1.2 Ghz, implying that the wave length is .25 m. The
artificial boundary is located — again — at a 3) distance from B, as shown
on Fig. 8.10. The finite element triangulation has 33,237 triangles and
16,975 vertices, and is also shown on Figure 8.10. The mean length of the
edges in the external region is A/12.5, while it is A/16 inside the cavity to
obtain acceptable accuracy. The value of At corresponds to 50 time steps
per period. The convergence to the solution for illuminating
monochromatic waves of incidence «=0° and 30° is shown on Figures 8.11
and 8.12, respectively. We observe that the first solution (a=0°) requires
only 100 iterations while the second one (a==30?), with multiple internal
reflections, needs 200 iterations of algorithm (6.1)—(6.13); we have also
visualized the convergence of the asymptotic method. The contour lines of
the computed scattered and total fields (actually, their imaginary
component) are shown on Figures 8.13 and 8.14, respectively, for a=30°;
the space periodicity is clear on these figures. For this stiff case and in
particular at high angle of illumination of the scatter by radar waves (30
degrees and more) the control based method seems definitely more robust
and efficient than the asymptotic one as shown on Figures 8.15(a) and (b);
this type of behavior has been observed for different complicated geometries
including non convexity or curvature effects, while the two methods give
very similar computed time periodic solutions for simpler geometries like
the one in Figures 8.16 (control method) and 8.17 (asymptotic method) in
the case of an open cavity. An interesting phenomenon appears during the
convergence process for large values of the incidence; indeed, the
convergence curve shows a tendency to flatten, due to the fact that some
residual modes with large amplitude are hard to damp before reaching again
a “nice” convergence behavior.
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Figure 8.1: First Test Problem:

The computational domain and its triangulation
(11,588 vertices, 22,736 triangles)
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Figure 8.2: First Test Problem:
Variation of the Scattered Field
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Figure 8.3: First Test Problem:
Variation of the Scattered Field
(opposite to incident direction)
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Figure 8.4: First Test Problem:
Variation of the Scattered Field
(orthogonal direction)
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Figure 8.5: First Test Problem:
Variation of the cost function
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Figure 8.6: First Test Problem:
Variation of the normalized gradient of the cost function
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Figure 8.7: Second Test Problem:
Computational Domain and its Triangulation
(7,323 vertices, 14,224 triangles)
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Figure 8.8: Second Test Problem:
Contours of the Scattered Field
(real component)
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Figure 8.9: Second Test Problem:
Contours of the Scattered Field
(imaginary component)

Figure 8.10: Third Test Problem:
The computational problem

(16,975 vertices, 33,237 triangles)

and its triangulation
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Figure 8.11: Third Test Problem:
Variation of the cost function (a=0°)
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Figure 8.12: Third Test Problem:
Variation of the cost function (a=30)
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Figure 8.13: Third Test Problem (a=30°):
Contours of the scattered field
(imaginary component)
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Figure 8.14: Third Test Problem (o=30°):
Contours of the total field
(imaginary component)
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Figure 8.15 (a): Third Test Problem (a=30°)
Variation of the Periodicity Residuals (Control Solution)
(—): Displacement residual; (....): Velocity residual
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Figure 8.15 (b): Third Test Problem (a=30°)
Variation of the Periodicity Residuals (Asymptotic Solution)
(—): Displacement residual; (....): Velocity residual
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Figure 8.16: Open Cavity Problem
Contours of the Scattered Field
(real component, Control Method)
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Figure 8.17: Open Cavity Problem
Contours of the Scattered Field
(real component, Asymptotic Method)
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9. Further Comments and Conclusion.

We have discussed in this paper a control based novel method to
solve Helmholtz and two-dimensional harmonic Maxwell equations for large
wave numbers and for complicated geometries. The new method appears to
be more efficient than the traditional computational methods which are
based on either time asymptotic behavior, or Linear Algebra algorithms for
very large indefinite linear systems.

This new methodology looks promising for three dimensional
Maxwell equations and for heterogeneous media. For very large problems,
it is likely that we shall have to combine it to domain decomposition and/or
fictitious domain methods, and also to higher order approximations to
reduce the number of grid points.
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