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1. Introduction

In aerodynamics, the description of viscous flows at a high Reynolds number
may require the simultaneous use of different models. Indeed, in this case large
parts of the flow can be considered inviscid, thus they can appropriately be
described by a simplified set of equations (the Euler equations). Usually, the
viscous effects are relevant just close to physical boundaries and around shocks,
where the more complex Navier—-Stokes equations should be used. Though it is
a common practice to solve the full Navier-Stokes equations in the whole fluid
domain, we believe that a very promising alternative consists in coupling the
Euler and the Navier—Stokes models in a self-adaptive way. In such a way, each
set of equations (which are of different mathematical nature) can be discretized
by the most appropriate numerical scheme. The local choice between the two sets
of equations is not fixed a priori, but it is part of the model itself. As mentioned
before, suitable interface conditions are required to ensure a smooth transition
between the two models.

Based on these considerations, a model of viscous/inviscid coupling, known as
“y—formulation” was introduced in [BCR)]. The basic idea is as follows. Suppose
that, in the fluid domain O € R"™, the complete set of (steady) viscous equations
is written as

(1.1) vD(u) +C(y) = f,

where D(u) and C(u) stand for differential operators describing the viscous in-
teraction and the advective phenomena respectively, and v is a number which
scales the magnitude of the two effects. Clearly, (1.1) is supplemented by the
appropriate boundary conditions. The y—formulation consists of replacing {1.1)

by
(1.2) vx(D(u)) +C(u) = £,
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where x is a smooth, monotone function which vanishes where the size of its
argument is below a prescribed threshold §, and basically concides with the
identity elsewhere. With such a definition, equation (1.2) coincides with (1.1)
where the x—function is the identity (i.e., where the viscous terms D(u) cannot
be ignored), while (1.2) reduces to the inviscid model

(1.3) Clu)=f

where x = 0 (i.e., where the viscous terms are negligeable). The two regions
in which the domain Q is partitioned by the x—function are not fixed a priori,
but they are automatically determined by the solution u of the y—equation (1.2).
Moreover, the smoothness of the y—function allows a smooth coupling between
the viscous and inviscid solutions. Finally, the threshold § can be chosen as a
function of v in such a way that the solution of (1.2) is as close as we want to
the solution of (1.1).

For a scalar advection—diffusion equation, the x-problem (1.2) has been in-
vestigated in [BCR| and [R] for Dirichlet boundary conditions and smooth do-
mains, and in [CR1] for mixed boundary conditions and domains with corners.
An analysis of finite elements approximations has been carried out in [Ri], while
the practical implementation of the y—method for the Burgers equation and the
conical Navier—Stokes equations is discussed in [AC1], [AC2]. Pironneau and
co-workers (see [AP], [AGP], [AMP]) have considered other implementations
of the y—function for the viscous/inviscid coupling. Moreover, they applied the
x—method in the coupling of other flow models, such as the potential /rotational
models and the Stokes/Navier-Stokes equations.

The x—formulation induces in a natural way a domain decomposition method.
Indeed, from a practical point of view, solving the y—equation (1.2) in the whole
domain would be even more expensive than solving the original equation (1.1).
Instead, it is natural to solve equation (1.2) only where the y—term is non-zero;
elsewhere, equation (1.2) coincides with the inviscid equation (1.3). The domain
decomposition can be accomplished as follows. Denote by Z ¢ Q the set of
points where x(D(u)) is zero. Let us choose an open set {1; strictly contained

in Z, and let us set 2, :=Q\ ;. Then, equation (1.2) splits into the couple of
equations

(1.4) Clu)=f inqQ,
(1.5) ~vx(D(u,)) + Clu) =71 in {1,,
where u; = ulg. and u, = U|,,- These equations should be supplemented

by appropriate conditions on the interface P := 80; N 9Q, such that 1) the
resulting problems in ; and 0, are well-posed and 147) the coupling of the two
problems is equivalent to the original problem (1.2). For equation (1.5) in {2,
the natural condition is suggested by the fact that, by the definition of £1;, the
x—function vanishes on T'. Hence, equation (1.2) is equivalent on T to C(u) = f,
which we consider as an oblique derivative condition to be attached to equation
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(1.5). The splitting (1.4)—(1.5) suggests a way of solving the x~problem (1.2}, via
an iterative procedure which alternatively solves problem (1.4) and (1.5}. The
matching on I is of hyperbolic/hyperbolic type, even if heterogeneous equations
are solved in the two subdomains. A further feature of the domain decomposition
method based on the y—formulation is the possibility of automatic detection of
Z as a part of the iterative process, with consequent adaptive adjustment of
the interface position I'. This feature has been succesfully implemented in the
solution of Burgers’ equation in [AC1]; its theoretical analysis will be discussed
elsewhere. ,
The present paper is a summary of the main results contained in [CR1| and
[CR2]. We refer to those papers for the detailed proofs and for further results.

2. Statement of the Problem

Consider the following convection—diffusion problem:

—vAu+a-Vutbu=jf in
(2.1)

u=g on Jdf}.

Here 2 ¢ R? is a bounded domain, whose boundary is a piecewise C'! curvili-
near polygon, with no cusps and no angles larger than r; the diffusion coefficient
v > 0 is constant; a € [CH1((1)}?, b € C°() satisfy the condition

(2.2) —%V ca+b>a>0 in€l for some positive constant a;

the data satisfy the regularity assumptions f € L?((2), g is the trace on 8Q of a
function in H?(€2). It is well known (see, e.g., [G]) that with these hypotheses
problem (2.1) admits a unique solution in H?(f2).

The “y—formulation” introduced in [BCR] consists of replacing (2.1) with the
modified problem

{ —vx(Au)+a-Vu+bu=f inl
(2.3)

u=g ondQ,

where the monotone function x : R — R is defined by

0 0<s<§—o
]
= —(s—8)+6 b—o<s<é
(2.4) x(s) ~(s=9)
3 )
X(s) = —x(—s) 38 <0,

§, o being two fixed parameters satisfying 0 <§,0< 0o < 4.
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Further assumptions are required for the well-posedness of the y—problem.
Precisely, we make the following hypotheses:

(2.5) b>bg >0 forsome constant by;

there exists a function ¢; € W2°°(Q1) such that
(2.6) A¢1 <0 in(, a- V¢ > a9 in{l for some constant ag > 0.

Problem (2.3) was first investigated in [BCR] and in [R], where existence and
uniqueness of a solution, as well as further properties of it, were established.
In [CR1], similar results were obtained for a more general problem, allowing
for mixed Dirichlet/oblique derivative boundary conditions and less stringent
assumptions on the geometry and on the data. For the sake of clarity, we prefer
to discuss the domain decomposition technique on the simple problem (2.3);
however, all the subsequent results hold in the most general situation considered
in [CR1].

Let us now make the basic assumption that there exists a subdomain of 1
where x(Au) is identically zero, so that equation (2.3) is of hyperbolic type
therein. More precisely, let us suppose that f € C°({1) and g is the trace of a
function in W2?((1) for some p > 2. According to [BCR, Thm.3.3], u € C*({})
and x(Au) is continuous in ©. Then, let us set Z = {z € Q : x(Au)(z) = 0}
and let us assume that the interior of Z is non empty. Let us denote by ; a
fixed open set contained in Z, and let us set €0, := 2\ {;. In this way we have
decomposed (2 into two disjoint open subdomains {2, and €,. Let us denote
by T' := 8Q; N 3Q, the common interface between the subdomains. Technical
assumptions on ' will be made precise in the sequel of the paper. Let us set
Ui 1= U, and u, 1= g, Then, u; satisfies the reduced equation

(2.7 a-Vu;+bu; = f in
whereas u, satisfies the complete y—equation
(2.8) —vx(Auy)+a-Vu, +buy, = f in Q,.

W(‘a now supplement (2.7) and (2.8) with appropriate boundary and interface
conditions such that: 1) the resulting problems in £2; and 1, are well-posed,
e(md)zz ) the coupling of the two problems is equivalent to the original y—problem
2.3).

To this end, let us denote by n; and n,, the outgoing normals to the boundary
of 1; and Q,, respectively, and define the “inflow” boundary of (1; as

(2.9) 80 = {z € 0 : a(z) - n;(z) < 0}.

The conditions on the common interface T' of the subdomains are derived by
looking at » on T'. Firstly, recalling that u C1(Q) we get in particular that

(2.10) u is C° across T;
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secondly, taking into account that x(Au) = 0 in a neighborhood of T, we get
from (2.3)

" (2.11) a-Vut+bu=f onTl.

The previous identity makes sense in C°(T). Setting I'™ = 80, NI, I't = T\T'~,
we conclude that u; and u, respectively solve the two coupled boundary value
problems:

(2.12.1) | a-Vu +bu;=f in
(2.12.2) u; =g on df)] NaN,
(2.12.3) u; =u, onl",

and

( ) —vx(Auy) +a - Vu, +bu, =f in{,,
( ) uy =g on I, NN,
(2.13.3) , uy =u; on It
( ) a-Vuy,+buy,=f onl".

Note that (2.13.4) is an oblique—derivative condition which is (formally) equi-
valent to imposing the vanishing of x(Au,) on I'". This is consistent with our
philosophy of placing the viscous/inviscid interface within the region where the
x—function vanishes. Problem (2.12) is a hyperbolic problem in Q; with Dirichlet
conditions specified on the inflow part of 3€);. Problem (2.13) is a non-linear
elliptic problem on {1,, with mixed boundary conditions on 9{2,.

It can be shown that solving the coupled problems (2.12)-{2.13) and then
gluing together the two solutions u; and u, is equivalent to solve the original
problem (2.3). For all details, we refer to [CR2], Section 2.

8. Solving the Coupled Problems by an Iterative Method

In this Section, we will study a simple iterative algorithm to solve problem
(2.3) using sub—problems (2.12) and (2.13). Precisely, we propose to alternate

between the y-viscous and inviscid subdomains as follows: given u on I'~, for
n=1,2,... define v in {); as the solution of
a-Vul +bul=f in €,
(3.1) ul=g on 9017 N aq,
ul = ur~! onT7,

and define «¥ in {1, as the solution of
—vx(Aul}+a-Vuy +bul =f inQ,,
u? =g on 81, NOY,

v

3.2
(3:2) uy =u! on T,

a-Vul +bul=f onl".
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Note that the exchange of information between the two subproblems is of the
same type as the one used in a hyperbolic/hyperbolic coupling: each problem
receives Dirichlet data from the other subdomain through the part of the interface
where the flow is coming in. From now on, we assume that I' is a piecewise C1:
curve with no cusps, which does not intersect 0 forming cusps; besides, each
connected component of I'™ is a 1 curve. Moreover, we make two assumptions
on the behaviour of the coefficients a and b on I'. To this end, let n denote the
unit vector normal to T' pointing inside Q;, let r = (—n2,7n1) be the tangent
vector, and let a = a,n + a,7r be the corresponding splitting of a on I'. We
assume that the vector field a is nowhere tangent to T', precisely

(3.3) la-n|>B>0 onT

for some constant f > 0. Furthermore, we make the following coerciveness
assumption on I'":

o
(3.4) a,,+yl—-z—-—(ﬁf-) > —1av onI'~,

with « := v/2/C2C,, (here, C. is the norm of the inclusion HY?(Q) < L2(I'7)
and Cy is the Poincaré constant defined by ””“Hl(n) < C’,,”Vv”Lz( for each

Q)’
v € H'(02) such that v =0 on Ep).

REMARK 3.1. Assumption (3.3) on the transversality of a with respect to I’
enforces some geometrical conditions on T. For instance, it implies that 't and
I~ should meet forming a corner point. However, we recall that the curve I’
which separates {); and Q, is completely at our choice, provided it lies in the
region Z where x(Au) vanishes. Therefore, it is always possible to adjust locally
the shape of T in order to match the transversality condition with respect to the
vector field a. |

In the next two subsections, we will examine separately subproblems (2.12)
and (2.13), which form the two stages of the iterative method. We start with a
short analysis of problem (2.12).

3.1 The Hyperbolic Problem in ;. In this subsection, we consider the
following problem:

a-Vu;+buy; = f in(,
(3.1.1) =g ondQnaoqQ;

uy=¢ onl~,

Setting Au = a - Vu, we introduce the space D(A) :={ue L?*(0):a Vue
L?(Q)} endowed with the graph norm. We look for a solution of (3.1.1) in this
space. Recalling that our assumption on T' implies that a - n is bounded away
from zero therein, one can prove the following result {|{B, Theorem 2.3])
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THEOREM 3.1.1. Let g € L*(80N8Q; ) and ¢ € L3(I'"). Then there exists a
unique solution u; € D(A) of problem (3.1.1). Furthermore, uif, 4 € L?(a0]),

and the following estimate holds:
(8-1.2) [lullp(a)+llull g sa4) < CUIfll a0, H9l 2 0an00:) H9l L2 p-))- 0

The previous Theorem allows us to define the following continuous affine ope-
rator (depending on f and g)

T, : L*(T™) — L*(TY)

¢ —

(3.1.3) !

In order to establish further results that will be needed in the sequel, let us
introduce some more notation. To this end, note that since a € [C**1({};)]?, it is
possible to extend it in R? in such a way that the integral curves of a

g?'y(t, z) =a(y(¢ ) z e
(0, z) =z

are defined for all t € R (see, e.g., [A, pag.92]). Since a is non-singular, the
Poincaré-Bendixson Theorem guarantees that the integral curves of the field stay
in {); only for a bounded set of times. Therefore, for each z € I't, let ¢~ (z) < 0
be the maximum of negative times such that ¢ := y(t™ (z), z) € 99Q;. It is easily
seen that indeed ¢ belongs to the closure of 39, say cl(802;). Let us define the
mapping B : I't — cl(80]) by E(z) = ¢, and let us set

(3.1.4) do := inf {dist(z,E(z)) : 2 € T, E(z) € T }.

In other words, do measures the smallest length of the characteristic curves in
{2; joining a point of I'* to a point of I'". In Section 3.3 we will analyze the way
the behaviour of the iterative method {3.1)—(3.2) depends on dy.

We state now a particular form of the maximum principle that will be needed
in the sequel (see Thm. 3.1.2 in [CR2]).

THEOREM 3.1.2. Let ¢1,¢2 € L2(I'") be such that ¢; — ¢ € L°(T'~). Then
Ti(¢1 — $2) € L=(T7) and

—badafilall ., .
(3.15)  Ti(pr — d2)llpeprs) S € NG~ pellpeipy- B

COROLLARY 3.1.1. Ifw Is the solution of problem (3.1.6) then
”w“Lw(Q,«} S H¢1 -¢2!1L°°(I“)' l

We recall that the solution of a hyperbolic problem (even of the simplest type
{8.1.1)) may develop discontinuities despite the smoothness of the inflow data
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and the coefficients of the operator, if the inflow boundary 8(; is not connected.
Such singularities may also accumulate if, for instance, there is an infinite number
of connected components of 302 . Therefore, even if we assume that the inflow

data ¢ is regular, we can guarantee no more than L®-regularity for the outflow
value T;(¢). Thus, we must be able to solve the y—elliptic subproblem with a

Dirichlet data having less than H'/2—regularity. In the next subsection, we will
be able to weaken the regularity of the Dirichlet data for the x—elliptic problem
down to mere L2~integrability, apart from an arbitrarily small neighborhood of
the points of T in which the boundary conditions change of type. Therefore, we
will now make an extra assumption on the relationship between the vector field
a and the interface I'. We ask that

(3.1.6) for all z € It N T~ there exists a neighborhood N ir; r+

which is mapped diffeomorphically by E onto an open set in a0 .

Assumption (3.1.6) precisely prevents the accumulation of infinitely many di-
scontinuities of T;(4) at the points of 't NT'~. Indeed, it is easily seen that the
following consequence of (3.1.6) holds.

PROPOSITION 3.1.1. Define the Frechét space
L3(T*) := {v € L*(T") : 3 a neighborhood N of T in which vy € HY?(N)}.

Then the operator T; defined in (3.1.3) maps H'/?(I'") into L2(T'+). §

3.2 The x—elliptic Problem in ,. In this subsection, we consider the
following problem:

—vx(Auy) +a- Vuy, + bu, = in Q,,
uy =g on 9Q, N3N,
uy =% onIt,

a-Vu,+bu,=f onl7,

(3.2.1)

where ¢ is a L®—function on 't which has H1/2 regularity on a neighborhood
of T't. In the iterative procedure, 1 will be the trace on I't of the solution of
the hyperbolic problem (3.1.1). As we have seen above, 1 may not belong to
HY/2(r+),

It is proven in Thms.3.2.1 and 3.2.2 of [CR2] that if ¢ € LZ(I'), then we
have existence and uniqueness of a solution u, of problem (3.2.1), in the “very

weak” sense (see, e.g., [N]). Furthermore, we can define the continuous nonlinear
operator (depending on f and q)

T, : L3(T*) — HY/?(r7)

¥ — Yv|p_-
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Finally, if 41, $2 € L®(I'") 0 LZ(T't), then Ty (1 — ¥2) € L®(T~) and

(3'2'2) “Tu('ﬁl - ¢2)”L°°(I‘“) < ”'»bl - ’/’QHLm(I‘-F)

We are now ready to analyze the iterative procedure for solving problem
(2:12)—(2.13).

3.8 The Convergence of the Iterative Method. Consider the iterative
scheme (3.1)-(3.2). Assume that up € H'(Q) N L®(Q) and set ud = ug on
I First of all, let us note that the sequence (uf,u?) (n > 1) is well defined.
Indeed, if u:,‘"1|r_ € Hl/z(l‘_), then by Theorem 3.1.1 and Proposition 3.1.1,

Problem (3.1) has a unique solution u? such that ul |y € LZ(T*). Then, by
the results of Subsection 3.2, Problem (3.2) has a unique solution uj; such that
u|p- € HY/2(r-),

Let us define u™ € L3(f1) as

ul{z) ze;
un(z) ={ 1,( ) 2
ur(z) z€Q,
(note that ul? = u? on I'"). The maximum principles for the hyperbolic and
x—elliptic problems give the following error estimate.

THEOREM 3.3.1. Under all the assumptions of Sections 1 and 3, the function
u™ belongs to L (1) and satisfies the estimate

~bodo/llall, 771
(3.3.1) ||u—u””me)S € LT |[u——u“”Lm(F_).

PROOF: See Thm.3.3.1in [CR2]. I

REMARK 3.3.1. The convergence of the iterative scheme depends on the
value of dy, which can be either 0, or a strictly positive number, or even +oo.
When dy > 0, convergence can be achieved in some cases after a finite number
of iterations. Conversely, if dg = 0, the iterative method may not converge at
all in the maximum norm. A remedy consists of a local overlapping of §1; over
Q, around the points of " NT~. A more elegant remedy is the self-adaptive
adjustment of the interface I' during the iterations. We refer to [CR2] for more

details. J
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