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Abstract

We study two domain decomposition based preconditioners for
solving singularly perturbed convection diffusion problems. Both
preconditioners are based on a partition of the domain into two re-
gions, one where the convection term dominates and on which the
convection term is used, and the other where the diffusion term
dominates. We consider two different ways of coupling the ellip-
tic and hyperbolic problems, yielding the two preconditioners. One
approach proposed by Gastaldi, Quarteroni, and Sacchi-Landriani,
enforces continuity of the flux, while another used by Ashby, Saylor
and Scroggs enforces continuity of the solution. Numerical results
are reported on tests of these preconditioners and of the ILU pre-
conditioner.

1 Introduction

We consider the solution of a singular perturbation scalar convection
diffusion problem of the form:

eLgu+Lou = f(x,y) in (1)
u = 0 on %)

where Ly and L, are diffusion and convection operators, respectively,
defined below:

Lgu=—Au, and L.u = a(z,y)us + bz, y)u,.
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158 T. F. CHAN AND T. P. MATHEW

Here ¢ is a positive parameter representing viscosity, and a(z, y), b(z,y)
describes the velocity field of the zero viscosity problem. Such systems
can arise as a steady state problem or from applying an implicit method to
a time dependent problem. Discretization, either by stream line diffusion
or upwind finite difference methods, of the above equations yield large,
sparse, non-symmetric linear systems which are ill-conditioned. We will
focus on solving these linear systems by preconditioned iterative methods
such as GMRES, BCG, CGS, QMR, etc, see for instance Saad and Schultz
[15] and Freund, Golub and Nachtigal [8].

In order for'the preconditioned iterative method to be efficient, each it-
eration must be inexpensive to implement (each iteration involves solving
a linear system with the preconditioner as coefficient matrix), and in addi-
tion, the convergence rate of the preconditioned iterative method should
be independent of parameters of the discrete problem (such as mesh size
h and viscosity €). Most standard domain decomposition and multi-level
preconditioners for solving these non-symmetric linear systems, however,
require that a non-symmetric problem be solved on a sufficiently fine
coarse grid during each iteration, in order to maintain an iteration rate
which does not deteriorate as h,e — 0, see [4, 5, 3]. As the cell Reynold’s
number €/h — 0, the size of this coarse grid problem becomes corre-
spondingly large, and the solution of this coarse grid problem can become
expensive and affect the overall complexity of the iterative procedure.

Based on recent studies by Gastaldi, Quarteroni and Sacchi-Landriani
[9], and Ashby, Saylor and Scroggs [1], we study in this paper an alterna-
tive technique for solving the non-symmetric linear systems arising from
convection diffusion problems, based on the use of a two subregion domain
decomposition method (primarily to avoid the requirement of solving a
sufficiently fine coarse grid problem). The two subregions are chosen as
in perturbation theory, see [11], for singular perturbation problems: an
elliptic region (which contains the layer and where the elliptic problem
dominates) and a hyperbolic region (where the convection term domi-
nates). Our main results can be summarized as follows. For fixed mesh
size b on a uniform mesh, both preconditioners we consider yield iteration
rates which improve as € — 0, but which deteriorates mildly for fixed ¢,
as h — 0. However, we expect that these rates of convergence will not
deteriorate on locally refined grids (which may be required in the case
of_ singular perturbation problems with boundary or interior layers). We
will provide more discussion of this later in the paper.
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1.1 Upwind Discretization of the Elliptic Problem

For simplicity we choose our discretization to be the standard 1st order
upwind finite difference on a uniform mesh, and this is known to yield a
coefficient matrix L» which is an M-matrix, and which is stable for any
choice of € or h. We will denote the grid points on the uniform mesh by
(zi,y;) = (ih, jh), where h is the mesh size. We denote by u;; and f;; the
discrete solution and the forcing term, respectively, at node (4, j):

ui; = u(zi,y5),  fij = fxi, y5)-
The standard forward and backward difference operators are defined by:

Ay o Wil Ui
D3 u;, T

- Ui U1
Dju;j = —l————ih
_ Ui j4l—Uij
D;'ui,j = = % C
. s — Wi j UG
Dy U = 3 .

In order to define the upwind scheme, we will use the notation:
a*(z,y) = max{a(z,y),0}; ¢ (z,y) = min{a(z,y),0},
and similarly for b(z,y). Using these, we approximate:
(a(z, y)us)ij = a:_%’jD;uij + a;%,jDIUij
(b(z, y)um)ij ~ b:,-j—%D?/_uij + bi’j_l_%D,,j'uij

and

duij — Ui—1j — Uitl,j — Ui+l — Yij-1
(= Au)y ~ 2~ HinL hz,J J = —(Apu)ij.

Then, eLy + L. is discretized by:

(Lru)i; = —e(Anw)ij + (a(z, y)us)ij + (b(z,y)ug)ij = fi;  for(zi,y;) € Q
uij =0 for(w;,y;) €00 °

which yields a linear system:
L'y = f, where L" = eLg+ L., f=¢fi+ fe,

where L; = —Ay, the 5-point Laplacian, L. is the discretization of the
convection term, fy is the forcing term when f(z,y) = 0 with contribu-
tions from the boundary data using the discrete Laplacian, and fc repre-
sents the sum of the discrete forcing terms f(z;,7;) and the contributions
from the boundary values using the convection stencil. To minimize nota-
tion, we will use L, Lq, L, etc., either to refer to the continuous operator

or to its finite difference matrix representation.
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2 Convection Operator as Preconditioner

Since both the preconditioners we study will be modifications of the con- -
vection component L., we first study some properties of it as a precon-
ditioner. One of the advantages of the convection matrix L. is that for
many choices of coefficients a, b, it is invertible and can be permuted
to be lower triangular and is thus easily inverted (such as when a(z,y)
and b(z,y) are constants). Even for problems in which a and b are vary-
ing, it may be possible to find a permutation based on graph theory for
which the matrix L. becomes lower triangular, see for instance [6] (this
corresponds to reordering the unknowns consistent with characteristic di-
rections). However, there are choices of a and b (such as for re-circulating
flows) for which the matrix L, becomes singular, and for which it is not re-
ducible to a triangular matrix by permutation. Such cases can be treated
by the addition of local diffusion terms to obtain an invertible matrix.
The preconditioners of Sections 3 and 4 will be of that form. Apart from
invertibility, as the mesh size h is reduced, the rate of convergence of the
convection preconditioned system deteriorates. Some of these issues are
discussed heuristically in this section.

2.1 Convergence Rate for Convection Preconditioner

From a matrix point of view, the convection preconditioned system L_ 1L
(when L is invertible) has the form:

LY (eLy+ L) = eL;'Ly+1.

For fixed h, as € — 0, this preconditioned system approaches I (since L
and Ly depend only on h), and yields a fast rate of convergence for most
iterative methods such as GMRES, BCG, CGS, QMR, etc. However,
when h and € are varied, the rate of convergence will depend on h and e,
and numerical tests indicate that it deteriorates as h — 0.

In the general case, where L, may not be invertible (such as for re-
circulating flows, i.e, closed characteristic curves), it is possible to obtain
an invertible preconditioner by a minor modification of L., by the local
addition of diffusion terms in the layer region and in the region in the
center of the re-circulation. This addition of local diffusion terms, and the
technique for solving the preconditioned system will be the main issues we
consider in sections 3 and 4. It is hoped that this will yield convergence

rates which do not deteriorate when the mesh is refined locally in the
diffusion region.
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2.2 Approximation Properties of the Convection Problem

We now present a heuristic discussion of the approximation error ¢e, —u,,
when the full convection diffusion problem is replaced by the convection
problem:

(eLg+ Lc)ues = f, replaced by Leue = f.

The error ue; —u, is of interest in assessing the closeness of both problems.
Let us suppose, for simplicity that f = f, i.e., f; = 0 (this can occur
for instance when the Dirichlet data is zero). Then,

Lc(uc - 'Ufea:) = fc — Letteg = (GLd + Lc)uez ~ Leuey = €Lgueg.
Applying L. to both sides, we estimate that:
”Uc — Ueg|| < EHLc—lnnLduem”'

Now, if || L || is uniformly bounded for all h, then the error would depend
primarily on || Lgue;||. For special choices of boundary conditions, yielding
no boundary layers, this quantity may be uniformly bounded independent
of h and ¢ and then the error would go to zero as ¢ — 0. However, ugy
generally has boundary layers (whose thickness depends on ¢) and so the
error will in general not approach zero as € — 0.

A similar error bound can be derived when the convection matrix L,
is modified by the addition of some local diffusion terms, My ,., see {9}:

M = 6Md,loc + L,

where M ;o locally equals Lq in certain subregions, and is zero in the rest
of the domain. Two kinds of approximations My j,. will be considered in
sections 3 and 4.

We emphasize that though L. may often provide an easily invertible
preconditioner (depending on a and b), its convergence rate will deterio-
rate as h — 0, due to the growth in eigenvalues of L;1L,.

3 Adapting the Vanishing Viscosity Method of
Gastaldi, Quarteroni, and Sacchi-Landriani

as Preconditioner

Assume that the domain § of the convection diffusion problem (1) is
partitioned into two disjoint subdomains €4 and €:

Q=Q,U8y,
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where the subdomain Qy is chosen to correspond to the elliptic or dif-
fusion region (containing the boundary or interior layers), and 2. cor-
responds to the hyperbolic or convection region (in which the convec-
tion term is dominant and the solution is smooth). The basic mixed
elliptic-hyperbolic approximation to (1) of Gastaldi, Quarteroni, Sacchi-
Landriani and Valli [9, 14], is obtained by adding a suitable local diffusion
operator Mg, to the convection term L. Accordingly, let us denote a
local diffusion operator Mg, on domain as follows:

1 in Qd

Md,ﬂd =-V- (m($7 y)vu) , Where m(:z:, y) = { 0 nQ-Qy

The mixed elliptic-hyperbolic operator M is then defined by:
Mu=eMyq,u+ Lou. (2)

In [9], a set of transmission conditions are also given for the solution
to satisfy on the interface between the elliptic and the hyperbolic regions.
In the Appendix, we shall give a heuristic, but perhaps more easily un-
derstood, derivation of this set of transmission conditions, by studying a
particular discretization scheme near the interface as h tends to zero.

Note, the difference between the original convection diffusion operator
of (1) and the mixed elliptic-hyperbolic operator (2) is:

(eLa+ Lc) — (eMygq, + L) = eM;q.,

a diffusion operator on Q..

A heuristic argument can be given, similar to that given in Section 2.2,
which explains why the mixed operator M can be a good approximation
to L*. Let Up, denote the solution to the mixed problem. Following
Section 2.2, one can easily derive:

lues — umll < el M~ I|(My0, — La)ues|| = e M M0, vea.

As shown above, the term My vy is equal to Au,, in the interior of
2. and vanishes identically on 4. Therefore, if ; is chosen so that the
boundary layers are captured properly, then || My o uc.|| is bounded and
therefore [[ue; — up|| < O(e) if we further assume [|]M 1]} is bounded.

One of the advantages of this mixed elliptic-hyperbolic problem is that
it can be solved efficiently by a Dirichlet-Neumann type iterative proce-
dure, see [9, 2], having a rate of convergence essentially independent of e
and the mesh parameter h, see [9]. The first preconditioner we consider
for the full convection diffusion problem is just a simple modification of
the mixed elliptic-hyperbolic problem (2). In the next subsection, we shall
give a matrix interpretation of this preconditioner.
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3.1 Preconditioner M; based on mixed elliptic-hyperbolic
problem

Let I" = 0§24N08Y, be the interface separating the two subdomains. Based
on these subdomains, we introduce a reordering of the unknowns z into
two blocks, so that the first block corresponds to the unknowns in the
interior of (). and the second block corresponds to the unknowns in QqUT

T = (x17$2)'

Corresponding to this reordering, the matrices L¢ and L? have a block-
structure:

L¢ LE Ld Ld
¢ = 11 12 , and Ld — 11 12 .
[ L.‘CZI 52 Lgl Lg2

The full convection diffusion matrix is then given by:

eL$ + L%, el + L5,
€L + L§ €L, + L5,

L=€Ld+Lc=l:

Similarly, the finite difference approximation to the local diffusion opera-
tor Mg q, has the form:

0 0
Md,Qd = l: 0 M2d2 :l ’

where Mg, corresponds to the discretization of Laplacian on Q4 with
Neumann boundary conditions on I':

Ou
— =gonl.

on 7

And so, the mixed elliptic-hyperbolic discretization matrix Myg, corre-
sponding to (2) is:

—Au=f, on Qy, withu =20 o0n dQzNa1Q,

L L ] _

Mygs = eMag, + Le = [ §1 €Mgh+ L,

We define the preconditioner M; by setting L, to zero:

L§ 0
M; = 1 . (3)

' [ 51 GM§2+L52J
We note that since L§, # 0 in general, M; is not the .mixed ‘el.liptic—
hyperbolic approximation, but corresponds to one step in a Dirichlet-
Neumann or block Gauss-Seidel type iteration to solve a mixed system.
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In the case of discretization by spectral methods, Gastaldi, Quarteroni
and Sacchi-Landriani [9] showed that the Dirichlet-Neumann iteration to
solve the mixed problem converges at a rate independent of N (the order
of the spectral method) and e. Heuristically, we expect that in the finite
difference case, if M is used as preconditioner for Mg, it would also
converge at a rate independent of h and e.

Note that the system:

L§1 0 1 — b
L§; eMgh+ L, 2 f2 |’
can be solved in two steps. In step one, solve:

Lz = fi1,

using an ordering which makes the system lower triangular (because it is
a purely hyperbolic problem). In step two, solve:

(eME + LS)xo = f3 — Ly z1.

This is potentially a costly step, but an alternate preconditioner may
be obtained by replacing e Mg, + LS, by a suitably scaled version of the
Laplacian or a preconditioner for the Laplacian. Numerical tests of pre-
conditioner M; will be presented in section 5.

4 Relation to the Physically Motivated Domain
Decomposition of Ashby, Saylor, and Scroggs

We next briefly describe another recently proposed convection diffusion
preconditioner by Ashby, Saylor and Scroggs [1], which we also included
in our numerical studies. Like the mixed elliptic-hyperbolic problem used
in [9, 14], this preconditioner is obtained from the convection matrix L.
by addition of a local diffusion term in a domain 4. But the precise
diffusion operator differs from that used in [9]. As before, the domain
is partitioned into two subregions Q. and Qg. It is suitable to choose Q.
and {24 so that they overlap by one grid, in such a way that the interior
nodes 71 in {2, and the interior nodes z3 in {4 partition the unknowns
into two blocks:
T = (IE 1, 3;2)'

Corresponding to this partition, the 1st order upwind discretization has
the following block structure:

L4, + L8, eLdy + I
h=| L el + Ly whrh| T || A
L +Ly eLp+Lg " Ty | ’
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and the local diffusion matrix used in [1] can be written:

0 0
Md,pmdd = [ Lgl Lg2 :l .

Note that Mg pmqdq is a submatrix of the diffusion problem Ly and differs
from the local diffusion term used in [9]. The physically motivated domain
decomposition preconditioner Mp,,4q was defined in [1] for the case of a
uni-directional flow field to be:

Mgz = |, S0 0 (4)
pm €L + LS, eldy+ L5 |-

This preconditioner is easily inverted in two steps as follows: In step one
solve L§;x1 = f1. In step 2, solve

(eL3y + Ly)m2 = f2 — (el + L)1

The coefficient matrix in step 1 is lower triangular for suitable orderings
(again because the problem is hyperbolic), and can be inverted efficiently.
In order to reduce the cost of inversion in step 2, Ashby, Saylor and
Scroggs approximate the coefficient matrix by an upper triangular ma-
trix, but in our tests we solve this by a direct method. This is potentially
the most expensive step of the preconditioning, and as mentioned ear-
lier, its cost can be reduced by replacing (eLg, + L§,) by any suitable
preconditioner for the Laplacian on €.

4.1 Some Differences Between the Two Approaches

One of the differences between the approaches of Gastaldi, Quarteroni
and Sacchi-Landriani [9] and of Ashby, Saylor and Scroggs [1] can best be
illustrated in the case of uni-directional flow fields (a,b). Namely, Mpn44
enforces continuity of the solution across the two subdomains, while Mg,
enforces continuity of the flux. In fact, Mpndq corresponds to a Schwarz
alternating method (with one grid point overlap), see [13, 10], to solve the
convection diffusion problem based on subdomains £, and £ in which the
convection-diffusion problem on €. is replaced by the convection problem
on §,.

Below, these differences are seen for a simple one dimensional model
problem:

—e—d- (m(z)d—u) + gﬁ = f(z), on (0,1) with u=0forz=0,1,
T
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where:

1 z€lel]

The preconditioners M; and Mpy,4q for this model problem discretized by
the upwind scheme on a grid with 3 nodes each in Q. and €24 are:

m(:L')={ 0 z€l0,c

[ h
—-h h
—h h
=2
My=h —h €+h —€
—e—h 2e¢+h —€
| —e—h 2+ h |
— h =
—-h h
—h h
_ =2
Mpmaa = h —e—h 2+h —e

—e—h 2¢+h —€
L —€—h 2e+h |

The two matrices differ in the (4, 3) and (4,4) entry.

5 Numerical Experiments

We now present the results of numerical tests of the two main precondi-
tioners we have described: M; of equation (3), based on the modification
of the mixed elliptic-hyperbolic approximation Mgq, of [9], and Mpmad
of [1], described in equation (4). For comparison purposes, we have also
included tests with the standard ILU preconditioner (with natural lexi-
cographical ordering).

Three sample convection diffusion elliptic problems of the following
form were considered on the domain Q = [0, 1]2:

—eAu+ a(z,Y)us + b(z,y)uy, =0, inQ, u=g(z,y)ond.
The three choices of coefficients and subdomains were:

1. Uni-directional flow (same as test problem used in [1]):

1 y=1

a(z,y) =05, b(z,y) =15, g(z, y) = { 0 elsewhere

The subdomains were chosen:

Qi ={(z,9):y>1-(1/6)}; Qe =0Q-Qq.
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Table 1: ILU for Uni-Dir flow (flow 1).
[P\e | [1]2T[2[2 82252527 27F [277]
1/5 4 5 4 4 4 4 3 3 3 2
1/9 5|6 | 6| 6| 6|5 | 4
1/17 8 9 10 10 10 9 6
1/33 10| 13 15 16 17 | 14 11

4 3 3
5 4 4
9 6 5

Table 2: ILU for Recirculating flow (flow 2).
[h\e] [1 7277 [22 2782 ]2  [2F 2] 28277 ]
1/5 4 5 5 5 6 6 5 6 5 5
1/9 6 6 7 8 8 9 9 9 9 8
1/17 9 9 11 | 12 | 13 | 16 | 17 | 17 | 16 | 15
1/33 131 14 | 15 1 21 {23 | 30 | 33 | 36 | 37 | 34

2. Recirculating flow centered about (0.5,0.5):
2 z=1
G(.’E,y) = _(y_0'5)a b(iL’,y) = (.’1:—-05), g(w,y) = { 1 elsewhere
The subdomains were chosen:

Qa = {(z,y) : |z—0.5| < 1/12, or y > 1—(1/6), or y < 1/6}; Q. = 2—Qy.

3. Quadrant of re-circulating flow, centered about (0, 0):

2 z=1
a(z,y) =y, bz,y)=-2z, g(z,y)= { 1 elsewhere

The subdomains were chosen:

Q= {(z,y) : > 1-(1/6), or y > 1—(1/6), or y < (1/6)}; Qe = 2—Ny.

Table 3: ILU for Quadrant of recirculating flow (flow 3).
[(ANe[ [T T2 2[5 [ ]2 [2°[277 [27° [277 |
1/5 2] 4 | 5 | 54 |5 4] a]4a]an4
1/9 6 6 6 8 8 7 7 6 6 6
1/17 9 9 i1 {13} 13 ;13 | 13 | 11 | 10 | 10
1/33 13| 14 | 16 | 20 | 24 | 25 | 24 | 19 | 17 | 17
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Table 4: M; (GQS) for Uni-Dir flow (flow 1).
(AT [T 2720 27 2327 [27 [ ]o]

1/5 15112 | 11 9 7 5 4 4 3 3
1/9 36 | 290 | 22 | 18 | 11 8 6 4 4 3
1/17 87| 69 | 45 | 32 | 18 | 13 8 5 4 4
1/33 * * | 107 | 64 | 43 | 21 | 12 8 5 4
1/65 * * * * | 111 | 52 | 20 | 13 7 5

Table 5: M; (GQS) for Recirculating flow (flow 2).
Lh\e| | 1 [277 ]2 [279 27 [2F[2°[2 T [278[277]
1/5 17 1 16 | 15 | 13 | 13 | 11 9 8 6 6
1/9 49 | 49 | 42 | 33 | 27 | 20 | 15 | 13 | 10 8
1/17 131 | 110} 87 | 71 | 44 | 37 | 25 [ 18 | 15 | 11
1/33 * * * * [116 | 89 | 64 | 38 | 25 | 18
1/65 * * * * * * (133 | 82 | 49 | 35

In all our tests, we used the Bi-Conjugate gradient algorithm [12, 7]
to solve the preconditioned system:

MLy = M"1f.
The stopping criterion was

Irsll 15

lI7oll
for the Euclidean norm ||.|, where 7 denotes the kth residual. The num-
ber of iterations are tabulated in tables 1 through 9 for various choices of

mesh sizes h and viscosity €. An * indicates that the number of iterations
exceeded 149. The mesh sizes ranged from:

h=1/5, 1/9, 1/17, 1/33, 1/65,
while the viscosity ranged from:
e=1, 271 ... 279

Tables 1, 2, 3 contain results of the standard ILU preconditioner (in lex-
icographical ordering) for the 3 test problems. Tables 4, 5, and 6 contain
results of tests with the preconditioner M, (based on My,s). Tables 7,

8, and 9 contain results of test with the physically motivated domain
decomposition preconditioner Mpmdd.
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Table 6: M, (GQS) for Quadrant of recirculating flow (flow 3).
(PN [ 1 272720 272" 2 [27[2°[27]
1/5 13 113 | 12 | 12 9 9 7 6 5 4
1/9 35 | 32 130 | 24 | 18 | 13 9 8 6 5
1/17 106 | 88 | 68 | 55 | 36 | 24 | 17 | 11 8 6
1/33 * * * 1139 72 | 54 | 33 | 21 | 14 | 10
1/65 * * * * * | 138 75 | 53 | 30 | 18

Table 7. My,qq for Uni-Dir flow (flow 1).
(PAe [ 1 27727 ]9 2 ]2 [ [2 722"
1/5 13 |12 | 11 9 7 5 4 4 3 3
1/9 30 | 27 | 22 | 16 | 12 8 6 4
1/17 61 | 56 | 43 | 32 | 21 | 12 8 6
1/33 140 | 134 | 110 65 | 42 | 27 | 11 8
1/65 * * * * [ 107 | 64 | 21 | 12

3| O =i~
O W | o

Table 8: M,,qq4 for Recirculating flow (flow 2).
[h\e] [ 1[277 272 [27 [2F[2° [27 7 [27F [ 277 ]
1/5 14| 14 | 14 | 14 | 13 | 11 | 10 8 6 4
1/9 30 26 | 24 | 23 | 21|17 | 13 | 10 9 8
1/17 69 69 | 66 | 61 | 47 { 39 | 27 | 23 | 15 | 11
1/33 * | 148 | 138 1132 | 96 | 77 | 51 | 35 | 25 | 18
1/65 x| % * * * x [ 126 | 88 | 50 | 33

Table 9: Mppq44 for Quadrant of Recirculating flow (flow 3).
[h\e] [1 ][22 [2%[2 227027 [277 [277]
1/5 151 13 | 14 | 12 | 11 8 7 5 4 3
1/9 31, 28 {26 {25 | 21 | 14 | 10 7 7 5
1/17 721 69 | 60 | 52 | 38 | 26 | 16 | 12 9 6
1/33 * * 145 | 119 | 79 55 | 32 | 21 13 9
1/65 * | x * * * * | 72 | 40 | 25 | 16
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6 Summary and Remarks

The numerical results indicate that the two main preconditioners M; and
Mpmdq improve as € — 0, but deteriorate as A — 0. In fact, the number of
iterations seems to increase at a rate proportional to O(e/h). This should
not be surprising because both preconditioners reduce to the convection
operator L. in ), and therefore as h — 0 with ¢ fixed, we expect the
conditioning (or spread of eigenvalues) x(M~1L") to behave as k(I +
eL71Ly) = O(e/h) since k(L;1Lg) = O(h~"). Thus no convection based
preconditioners can be spectrally equivalent to L* as h — 0. However,
it may not be necessary to use a value for h much smaller than ¢ in
() if the boundary layers are captured properly in Qg (e.g. with local
mesh refinement) and in such situations the convergence rates of these
two preconditioners may be quite acceptable.

One can also observe that there is little difference between the perfor-
mance of the preconditioners My and Mp,,q4q. Note that the ILU precon-
ditioner performed uniformly well in the uni-directional flow case, since
the nodes where aligned with the characteristic directions. It especially
works well for the case of large diffusion, unlike the other two precondi-
tioners. This seems to indicate that if a suitable algorithm is available
for permuting the unknowns along the characteristic directions, then ILU
could provide a very effective preconditioner.

Appendix

A Heuristic derivation of transmission bound-
ary conditions for a mixed elliptic-hyperbolic
problem

This appendix is included to provide a heuristic derivation of the trans-
mission boundary conditions associated with the mixed elliptic-hyperbolic
problem, see [9]. The solution of a standard elliptic problem, such as:

~V - (d(z,y)Vu) + Leu = f, u =0 on 89, (5)

where

o
dw={7 no

satisfies the following transmission boundary conditions:

+ a—
u = qu onI
du”

n% — (a,b) - tiu~ = e% —(a,b) -t onT,
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where + refers to the limit approaching I' from 4, and — refers to the
limit from §2., and 7; is the outward normal to T from (... Heuristically, as
n — 0, problem (5) approaches the mixed elliptic-hyperbolic problem (2)
and the flux transmission conditions approach:

L out .
~(a,b) - Bu” = e—— ~ (a,b) - Aout, onT. (6)
on

However, it is not true that ut = u~ on T\, see [9], i.e., the solution can
be discontinuous across parts of the interface. In fact, the transmission
conditions associated with the mixed problem (2) are different from the
standard elliptic case, because the solution of the mixed problem need not
be continuous across the interface I" (it will in general be continuous only
across the inflow boundary of 2.). However, the flux (7 - (mVu— (a,b)u))
will be continuous across the interface. Taking into account this possible
discontinuity in u, the valid transmission boundary condition for (2) was
shown in [9] to be:

0 = (—:%“-nt, on I';, )
—u~(a,b) - = e%%:i —ut(a,b) -1, on Loy

where

L ={(z,y) €T : (a(z,y),b(z,y)) - 71 < 0} = inflow boundary ,
Tout = {(z,y) €T : (a(z,y),b(z,y)) - i1 > 0} = outflow boundary .

Here we present a heuristic derivation of these using the 1st order upwind
finite difference approximation of problem (2).

To simplify this heuristic derivation, we will make the following as-
sumptions about the domain:

Q=1[0,1)%, with Q.= [0,¢] x [0,1], and Qg = [c,1] x [0,1],

for some ¢ € (0,1). For this choice of subdomains, the outward normal
on I for Q. is @3 = (1,0). If u is smooth within the interior of each
subdomain, by construction the upwind discretization M" of the mixed
problem (2) satisfies:

Mhy = a% + bg—;i + O(h), (zi,y;) € interior 1
MMy = —eAu+adt + bg_;; +O(h), (w;,y;) € interior Qg

We now consider the difference approximations on the interface I'.
Suppose (z;, y;) is a node on the inflow boundary L'z, i.e.,

iy - (a, b) < 0.
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Since 7 = (1,0), it follows that @ < 0 in the neighborhood of (z;,%;). So
the upwind finite difference approximation yields:

71% (2’u,z-j —10.5ui7]-+1 — 0.5u,,;’j_1 - ui+1’j)
(MPu)yy = RG24~ dig) = fijs
[ b, .
L (g — i j-1) — L2 (ugg — vigy1)

which when multiplied by A results in:

% (2uij —0.5u; 541 — 0.5u; 51 — u,;+17j)
h(Mhu);; = . —@iy1/2,5(ij — Uiv1,g) = hfij. (8)
b7 1oy — 1) — b g o (uij — vijy1)

Now, since on Qg UT the discrete solution u” is the solution of:

Mhul = —cAu+aft+b54+0(h)=f inQy
= u . onT, 9)
uh= 0 on 8Qy — T,

we expect heuristically that elliptic regularity results hold and that the
solution on Qg UT is smooth (Note: this would not hold on Q. UT since
the problem on €. is not elliptic and u; depends only on the data on I'y,).
Then, by applying Taylor series expansions to the discretization on I', we
obtain that on I';,:

765 (2'u,ij — 0.9 541 — 0.5u; 51 — Ui+1,j) = —Eg—:: + O(h)
—0i41/2,5(uij — tir1,5) = O(h)
+bF 1 jo(wi — wig-1) = by o (ui — wigp1) = O(h)
hfij =O(h)

Using these in (8),

= -eg% =0+0(h), onTy,. (10)

Similarly, we consider the difference stencil on the outflow boundary Tout,
i.e., on grid points (z;,y;) € I' such that a(z;,y;) > 0, and obtain that:

iz (2 = 0.5y — 050551 = ui4a,5)
(MPu)yy = | FR0i-1/2,(ij — vio15) = fijs

o b
+ 2 (g — g 1) — S (5 — g )

which when multiplied by A results in:

i (Quij ~ 051 541 — 0.5u;5-1 — uip,)
+ai-1/2,i(uij — ui-15) =hfi;. (1)

+
0751 y2 (Wi — ig1) = by (055 — wijgn)
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Again, using heuristically, the smoothness of « on Q4 UT", we obtain that:

% (Zuij — O.5ui,j+1 - 0.5u;,5-1 — u,-+17j) = —6% + O(h),
+ +0i_1/2,5(i5 — ui-1;) = aizut —aiju” + O(h)
075 1ja(tis — wiio1) = b (s — uige) = O(h)

hfi; = O(h)
Substituting these in (11), we obtain:
Sut
= —e—a?-{n— +aut =au”, on Toy. (12)

(10) and (12) provide the transmission boundary conditions for the flux.
Next, we note that for the upwind difference approximation, the solution
in Q. depends on the data u on I';,, and by properties of difference scheme,
the solution can be expected to be continuous as I';, is approached from
., Le.,

v~ =ut, onTy, (13)

Since the solution in £2, does not depend on the boundary values on Iy,
it will in general not be be continuous across I'yy;. Thus, heuristically,
equations (10), (12) and (13) together yield an O(h) approximation to
the transmission conditions (7) derived in [9)].
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