Contemporary Mathematics
Volume 157, 1994

A class of domain decomposition
preconditioners for
massively parallel computers

PATRICK CIARLET JR. AND GERARD MEURANT

ABSTRACT. In this paper we develop and experiment with a domain de-
composition preconditioner for the conjugate gradient method to solve lin-
ear systems arising from the discretization of elliptic partial differential
equations. The method uses a two colors ordering of the subdomains and
a coarse grid solve with a seven point scheme like matrix. Numerical ex-
periments show that the number of iterations can be made constant when
the mesh size is refined and therefore the method seems well suited for
massively parallel architectures with a few hundreds of processors.

1. Introduction

The purpose of this work is to develop and implement iterative methods well-
suited for massively parallel architectures in order to solve elliptic problems such
as

_div(A\Vu) = f in Q, with A(z,y) = (“(f)’ v) b(s y)>
u =0 on 6%

Here © =]0,1[x]0,1[and a, b and f are given functions, a and b being non-
negative over the domain. We approximate these problems by using a P; finite
element method with right triangles, leading to a five point centered scheme. By
this, we are able to handle problems with discontinuous coefficients without any
difficulty, as long as the jumps occur along the sides of the triangles. This gives

us a linear system

Az =b.

1991 Mathematics Subject Classification. Primary 65F10, 65F30.
The final detailed version of this paper will be submitted for publication elsewhere

1994 American Mathematical Society
0271-4132/94 $1.00 + $.25 per page

353

354 P. CIARLET, JR., AND G. MEURANT

T 0 :
.t I H
i 3! H
Y H n
i o [
L] l. !
" [o
o 0 H
: H
i H i
TRARILEY T TR IS IR
- . ++::::::::ﬂ 22 tHHHH
s
: T
i]
. 1
p “ H
n i
4 T :
: " HY
) I. .I
[I v [¥) P
T PrORAEE > INRHE L T
' ' -
H3 15 T
.l ba l.
i " 4
I‘ l. 'l
] i H
L] 13 1
H : '
i 1] H
ISR I IR 2T R 722 M
T HEEH AR IR
R 2 HERHE 2¢ AHHHEH L tHHARN
l. l' HE
Ve o i
v e t
i " o
Y " 0
i o 0
] v "
H H n
i " n
H H i

FIGURE 1 A DECOMPOSITION OF THE DOMAIN

We propose to solve this symmetric positive definite linear system by using
the Conjugate Gradient method together with a preconditioner designed for
efficient use on massively parallel computers with say, more than a hundred
processors and a distributed memory. The challenge we are faced with is to have
a trade-off between a good convergence rate for the Preconditioned Conjugate
Gradient method and a good Mflops rate on the given computers. On the kind
of architectures we are interested in, this translates into having a fast code on
each processor and minimizing the communications.

2.The Domain Decomposition preconditioners

The construction of the preconditioners is based on partitioning the domain as
indicated on Figure 1. This type of partitioning was introduced by Proskurowski
and al in [1], [2] and [3]. We consider four types of unknowns:

(1) the nodes in the white boxes (W),

(2) the nodes in the black boxes (B),

(8) the nodes in the rectangular boxes (interfaces) called separators (S),
(4) the nodes in the small striped boxes called crosspoints {C).

Classically we rewrite A as a 4 by 4 block matrix, the indices corresponding
to the types previously defined. Thus, we have:

Aww 0 Awsg 0
Alys ALs Ass Asc
0 0 AL, Acc

MASSIVELY PARALLEL PRECONDITIONERS 355

The preconditioner M is defined as
M=LD1'L",

where D is block diagonal and has the same block diagonal as I and, with
the same numbering as before,

Myw
A%“vs Ags Mss
0 0 Acgc Mee

At each step of the PCG method, we have to solve a problem with matrix M.
Now, the solution of the forward step

Mww yw cw
0 Mggp ys | _| ¢cB
Ays Ags Mss ys | | es
0 0 AL, Mcc Yc cc

is obtained by

1. Parallel.solves on the white and the black boxes Myy; = ¢ (i = W, B).

2. A solve on the interface Msg ys = cs — Alys yw — ALs yB.

3. A solve on the cross points Mccyc = cc — ALoys

Therefore, the total amount of work involved to solve a problem with matrix
M is: two parallel solves on the boxes (matrices Mj;, i« = W, S), two solves on
the interface (matrix Mss) and one solve on the cross points (matrix Mcc).
There are a lot of choices for matrices M;;. In a first step, we will consider and
implement the following choices:

M;; = Ay, i =W, S, that is, a direct solver is used for the subproblems.

Mg =2{A$) — ALs MzhAps}, or M3s = Bss — Abs MppAss.

Here, Agg. is the part of the assembly matrix computed from the black boxes,
and Bgg is equal to Agg except on the diagonal where

(Bss)ii = (Ass)ii — [(Aws)js,il, Ji such that (Aws)j,,i #0

This corresponds to a “Neumann” boundary condition on the black boxes. In
both cases, the coupling with the white nodes is neglected. It is easy to see that
if the unknowns in the black boxes are numbered in a “natural” way, then Mgg is
a block diagonal matrix (each block corresponding to the nodes around a black
box) and that the elements of these blocks can be computed cheaply. Indeed,
the matrix Mgg corresponds to the elimination of the interior nodes of the black
boxes. This gives a “clique” that connects all the nodes on the boundary of gach
box. Thus, the diagonal blocks of Mgg are dense matrices.

Finally, we choose Mcc = Acc — AL M, s_s,.} Asc. This matrix is sparse and
it is also easily seen that it has the structure given by a nine point stencil, two
coefficients of which are zero.

356 P. CIARLET, JR., AND G. MEURANT

w
=

1
\/

% (W) B -
S A

FIGURE 2 NINE-POINT SCHEME WITH TWO NULL COEFFICIENTS

This particular point requires a few more explanations. Msg is block diagonal,
each block corresponding to a clique. A cross point is related to exactly two
cliques by Agc and its transpose. Thus the term —AL, M, 5753 Agc links the
cross points as shown in Figure 2. In this paper, we will solve this “coarse grid”
system with a Diagonally Preconditioned Conjugate Gradient (DPCG) solver.
Further improvements of the method are to use the present algorithm recursively
in a multilevel way or to define an approximation of the inverse of the matrix
Mge for the cross points. This last method seems better suited for massively
parallel architectures.

3. A few numerical examples

We will show some numerical experiments with the implementation of the
proposed algorithm on a Sequent S80 parallel computer, with twenty processors,
which is a shared memory machine. Here, we will look only at the numerical
behaviour of the algorithm and not to its parallel implementation which will be
the subject of a forthcoming paper.

The set of different problems is

Problem #1 Problem :,15;E21 s Problem #3 . 5
10 if+<z<s 108 if+ < <32
a=1inQ az{ 1>%>1 a=b={ Hg=®¥=q
1 elsewhere 1 elsewhere
b=1inQ b=1inQ

We immediately see from the definition of the preconditioner that all the black
and white boxes can be solved independently if one box is given to a processor.
Therefore, we will study the influence of both the mesh size and the number of
boxes for a given mesh size on the rate of convergence. Let k denote the mesh
size, n the number of unknowns in each direction (h = ﬁ) and ng the number
of boxes. The total number of unknowns will either be 3969, 16129 or 65025. The

MASSIVELY PARALLEL PRECONDITIONERS 357

corresponding total number of boxes will be 64, 256 or 1024. This translates into
the maximum number of processors that can be used in parallel. The stopping
criterion is reached when the norm of the residual has been reduced by a factor
of 107 for the PCG method. Tables 1 and 2 givesthe number of iterations for
the two choices, Mlg and MZ;.

Table 1
Number of iterations for M1
Problem | Pb #1 | Pb #2| Pb #3
n==63 ny=2=8 19 26 ~
n=127,mo=16| 20| 29 -
n=1255n,=32 20| 30 _

Table 2
Number of iterations for M2
Problem | Pb #1 | Pb #2 | Pb #3
n==63n=28 16 22 17
n =127, ng = 16 17 24 18
n= 255, ng = 32 17 25 19

The — sign indicates that the PCG method does not converge for Problem
#3. Indeed, the preconditioner M}g is not a positive definite matrix in this
case. In the remaining cases, the number of iterations is always small. There is
a further evidence of the effectiveness of the method if one looks at the condition
numbers, which remain constant for a given problem and a given preconditioner
for all values of (n,ng), as long as the ratio n/ng is constant.

Table 3
Condition numbers
Problem | Pb #1 | Pb #2Pb #3
k({Mig}14) 8 18 -~
k({M3Zs}714) 5 11 8

Both the number of iterations and the condition numbers compare favorably
for M%, although exactly the same amount of work is done at each iteration of
the PCG method.

Now, we focuse our interest on the DPCG solver for the problems with ma-
trices M3, = Acc — AL {M25}! Asc. As the preconditioner is the diagonal
of the matrix, this solver is well-suited for an implementation on a parallel ar-
chitecture. The drawback is that, the diagonal is a poor preconditioner from the
point of view of condition number, as shown on Table 4. :

358 P. CIARLET, JR., AND G. MEURANT

Table 4

Average number of DPCG iterations for the choice MZg
Problem | Pb #1 | Pb #2 | Pb #3
no =28 16 26 20
ng = 16 32 49 38
ng = 32 63 97 74

Interestingly, the average number of iterations (because a certain number of
Mg problems are solved) does not depend on the mesh size. It depends only on
the number of boxes, or, and that is the same, on H= —7—‘1;, the mesh size for the
coarse mesh. Unfortunately, the behaviour of the average numbers of iterations
implies that the condition number of the DPCG solver grows like 1/H?.

Finally, we note that MZg has many “small” entries. So we try to discard
in MZg some of the connections: we choose to neglect some of the fill-ins by
value (except on the diagonal). We consider here Problem #1. The number of
iterations as a function of the percentage of dropped entries is given in Table 5.

Table 5
Number of iterations for MZg
% dropped | 0% | 50% | 75% | 100%
n=127,no =8| 20| 20} 21 93
n=127,ng=16| 17| 26| 33| 117

The worsening is more dramatic when the number of boxes is greater. In some
cases, we shall have to use more points or to define other strategies like the one
developped by Smith in [Smit91].

4. Conclusion

In this paper, we have presented a preconditioner for the Conjugate Gradient
method that seems well suited for massively parallel architectures. However now
we have to implement this algorithm on a massively parailel machine with a
few hundreds of processors. This work is underway. But, there are still some
questions that remain to be solved. What is the best strategy between keeping
entries by value or by position? What is the best way to solve the problem
on the coarse mesh? Do approximate inverses perform better than the DPCG
solver for Moe? These questions are being studied and will be the subject of a
forthcoming paper.

REFERENCES

1. M. Dryja, W. Proskurowski and O. Widlund, Numerical ezperiments and implementation
of a domain decomposition method with cross points for the model problem, Advances

* MASSIVELY PARALLEL PRECONDITIONERS 359

in Computer Methods for Partial Differential Equations VI (R. Vichnevetsky and R.S.
Stepleman, eds.), IMACS, 1987, pp. 23-27.

. M. Haghoo and W. Proskurowski, Parallel implementation of a domain decomposition
method, Technical Report, CRI 88-06 (1988).

. W. Proskurowski and S. Sha, Perjormance of the Neumann-Dirichlet preconditioner for
substructures with intersecting interfaces, Domain Decomposition Methods for Partial Dif-
ferential Equations (T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, eds.), Siam,
1990, pp. 322-337.

. Barry F. Smith, A domain decomposition algorithm for elliptic problems in three dimen-
sions, Numer. Math. 60 (1991), 219-234.

COMMISSARIAT A L’ENERGIE ATOMIQUE, CENTRE D’ETUDES DE LIMEIL-VALENTON,
94195 VILLENEUVE ST GEORGES, FRANCE

E-mail address: ciarlet@etca.fr

COMMISSARIAT A L’ENERGIE ATOMIQUE, CENTRE D’ETUDES DE LIMEIL~VALENTON,
94195 VILLENEUVE ST GEORGES, FRANCE

E-mail address: meurant@etca.fr

