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Introduction of Domain Decomposition
Techniques in Time-dependent Flow Problems

M.C. CICCOLI !, J.A. DESIDERI ', J. PERIAUX !

ABSTRACT. The purpose of this article is firstly to report on our experi-
ence in using domain-decomposition techniques to improve the efficiency
of existing time integration solvers employed to compute hypersonic non-
equilibrium flows. Secondly, our goal is to analyze alternate overlapped/non-
overlapped domain decomposition algerithms for a medel parabolic advection-
diffusion-production equation in view of implementation on a parallel com-
puter.

1. Introduction

The context of our preliminary experiments is that of hyperbolic systems
(Euler equations plus finite-rate chemistry). Hence. in the hypersonic regime,
and for steady external flows, the main numerical difficulty resides in the cap-
ture of a strong shock, and in the accurate solution of the species dissocia-
tion/recombination phenomena. Due to the presence of a strong shock. and the
necessity of coupling complex physical phenomena. the issue of efficiency is crit-
ical, and it makes the approach of domain-decomposition attractive from two
standpoints. The first is to partition geometrically the computational region
occupied by the fluid into subdomains. and use the same numerical algorithm in
each. The second considers subdomains where the physical modeling is different.
We consider both types of experiments in Sections 3 and 4. Before this, we recall
the ingredients of our basic method. Finally, in Section 5. we consider parallel
algorithms by domain decomposition on an advection-diffusion model problem
(with linear source term).
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2. Basic Implicit Algorithm for
Hypersonie Steady Non-Equilibrium Flow

Our typical problem is the computation of the hypersonic. steady non-equilib-
rium flow around a blunt geometry, modeling a reentry vehicle. We consider the
flow of air made of 5 reacting species. ¥, O. NO, N2 and O-. The flow is
governed by the Euler equations (omitted here) coupled with a set of species-

convection equations of the type: 9/9t(pY. )+ di\'(p)’;T) =p.T.Y1.---,Y5),
where Y, is a mass fraction. Hence the problem is of hyperholic type with source
terms, and the applications considered involve highly compressible flows.

The equations are approximated by upwind finite-volume schemes applicable
to unstructured meshes [1] [2]. For the time-integration (to steady state) our
basic algorithm employs a fractional-step approach. in which the Enler equations
and the chemistry equations are advanced forward in time by two subsequent
separate substeps [3]. Both substeps are implicit. and solved by (iauss-Seidel.
‘The timestep is local and is increased along the convergence process as the inverse
of the residual error, sometimes unlimitedly. Many experiments on the efficiency
of this basic algorithm are reported in [3] [4].

3. Experiments with several subdomains. a single numerical model

The external, inviscid non-equilibrium flow over a 60 cm-long double-ellipse
geometry at zero incidence is considered. The freestream Mach number is 25.
A reference calculation has been performed applying the hasic algorithm with a
single mesh of 2025 points.

The same mesh is partitioned in seven subdomains (see Figure 1). The same
algorithm is applied to full convergence to the smaller domain near the nose,
and then to the other subdomains in the direction of the flow. At the interface.
Dirichlet conditions from the previous computation are enforced. The converged
solution is shown on Figure 1 where iso-temperature contours are drawn. Evi-
dently, the whole solution is smooth (and-identical to the single-mesh solution).
By the partitioning into subproblems. a reduction in computational work by a
factor of 1.6 has been observed. Of course. in this example, the procedure works
because all the interfaces are supersonic. However. this algorithws realizes in a
very simple way a form of global space-marching which is very attractive if un-
structured grids are used, because more conventional space-marching techniques
are rather complex to implement in such context.

In a next experiment, the first subdomain. in the nose region where the flow is
mostly subsonic, is itself subdivided into 3 overlapped subdomains (see Figure 2)
and recomputed. Of course, when computing the first subdomain informations
are needed from the two other subdomains because the region is suhsonic. Thus
the computed solution near the boundaries of the new central subdomain is
obviously incorrect; however, with sufficient overlapping. the proper information
is "evidently” transferred to the lateral subdomains. since the global solution
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FiGure 1

FIGURE 2

is smooth and identical. A minor reduction of the computing time (20%) was
realized in this way. but more importantly, the experiment has denionstrated
that if the overlapping is sufficiently broad, convergence is maintained even when
division is introduced in the elliptic region.

Implementing a multiplicative Schwarz algorithm using the same domain de-
composition of the subsonic region resulted in no reduction of CPU time.

Next, the additive Schwarz algorithm (well suited for paratlel implementation)
was tested. The initial mesh was decomposed into nine overlapped subdomains
{see Figure 3). The computation time was ohserved to he approximately the
same as for the reference case. Nevertheless. this result is promising. since each
subdomain calculation can be realized independently. perhaps on a separate
Processor.

In a second calculation. the subsonic region alone was decomposed in both
directions in a total of nine overlapped subdomains {see Figure 4). As a result,
the computation time was (only) doubled: again. a parallel implementation of

this algorithm would be efficient.
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FiGURE 3 FIGURE 4

In all the above tests, a general remark can be made : on each subdomain,
the robustness of the scheme increases noticeahly. due to a better condition of
the matrices. Consequently, larger timesteps can be used stably and for steady-
state computations fewer time iterations are necessary. For example. in the last
example with nine overlapped subdomains. the following CFL numbers could be

used on the various subdomains :
no. of the subdomain 1 2 3 4 ) 6 T 8 9
CFL number 20 40| o] xt x| 40| x| x| x

All these CFL numbers are larger or equal to the value 20 of the reference
calculation. Hence, a gain in steady-state convergence is also realized.

4. Experiment with three physical models

We have experimented on the interfacing of three numerical approximations
associated with three levels of physical modeling {as in [6]). More precisely, a
simpler model is obtained by considering only the Euler equations {"inert gas
model”); inversely, a more complex model is obtained by considering in addition
thermal non-equilibrium equations (e.g. for N» and O2) of the sanme mathe-
matical form as the species equations ("chemical and thermal non-equilibrium
model”}. Typically, this model is redundant in say "half” of the shock layer far
from the shock near the body where thermal equilibriun is achieved [5]. Hence,
a calculation was made on the previous mesh decomposition (which is a “phys-
ical” decomposition). In the three subdomains on the left which contain the
freestream region, the inert gas model was used. In the three subdomains on the
right and next to the body, the standard chemical non-equilibrium model was
used. In the three subdomains in between which contain the shock. the most
complex model (chemical and thermal non-equilibrium) was considered. On fig-
ure 5, the resulting solution can be observed to be smooth. When employing the
most complex model in the shock region only. a reduction in computation time
of 48% was measured.
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FIGURE 5

5. Analysis and Implementation of
parallel algorithms for a model equation

Inview of future applications tothe Navier-Stokes equationsfor non-equilibrium
flows, a study is engaged on the following paraholic equation which contains be-
sides the usual advection-diffusion terms. a linear source term to model a typical

. w+ V.Vu—vAu = ~Au (rv. A >0)
production rate :

u=g overj, . un =0 over oy Ul

in which V" is a given velocity field. After an implicit time-discretisation. this
equation becomes:

au+ V.Vu—vAu = f (o > )

where f contains terms evaluated at the previous time level.

Our first experiment involves overlapped subdomains. If the distributions
of u over the boundaries of say two overlapping subdomains Q; and . are
respectively u; and us. and Q2 is the overlap region. the matching condition is
realized by driving to zero at each node J of the interface the following quantity

Ji =/ (ur (1) — uati)) ds
€Sz
where C; is the cell around i. The solution of this linear systen is carried by

a GMRES algorithm. For this test case. this procedure was not found efficient
compared with the additive Schwarz algorithi. Of course, fewer time-steps were
needed but an increase of the cost by a factor of 3.5 was observed. This is perhaps
due to the overly simple context.

An alternative to the above algorithm is to construct a partition of the domain
Q=008 [7] [8]. We denote 4 the interface. In such case. one introduces the
mterface function v, and the target is to calenlate this control function so that

. )
duy .+ Jua L .
— ds 15 driven to zero. knowing that
N

the index J(v) =

O

on  dn
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the auxiliary conditions v, = v and us = v are enforced at the imerface.
The index is driven to zero by a descent method whose iteration writes :

J 7 J(y)
I Jwll”

The gradient is computed from the solution of the adjoint equations [9] :

vI() = (A =22 0.y

w(y)* T = u(y)® -

where A1) and M?) are two co-states. This procedure was tested on a 1D case :

au auy — vuge = . (@eoy) € U1
w(0)=1, u(l)=10

The partition was made at £ = 1/2.

In 1D, this descent method identifies to Newton’s method. However. because .J
and its gradient vanish simultaneously. only linear convergence is achieved. This
can be remedied by considering the following alrernate index :

J(v)y = u.fr“(é) — )’ %)
In this case, quadratic convergence is achieved. and in fact full convergence is
realized in two iterations since the index is linear in .
To extend this elementary concept in 2D. one has to introduce as many such
indices, linear in u. as control points. and to solve as many adjoint squations
(with different boundary conditions). Heunce the alternative is either to use a
single quadratic index and face the necessity of tdentifving an efficient precon-
ditioner. or introduce a large number of linear constraints. The second choice
. may reveal efficient on a parallel machine. if the various adjoint equations can
be solved simultaneously.

6. Conclusions

We have shown with several experiments that domnain decompositon tech-
niques were efficient for hypersonic flows. even on a non parallel machine. We
have also made a calculation with three different physical models on the sub-
domains. Simple interface procedures have heen proposed in the case of the
advection-diffusion model problem. This work perniits to envisage certain effi-
cient extensions to the Navier-Stokes equations particularly if a parallel archi-
tecture can be exploited.
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