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NONITERATIVE DOMAIN DECOMPOSITION FOR SECOND
ORDER HYPERBOLIC PROBLEMS

CLINT N. DAWSON AND TODD F. DUPONT

ABSTRACT. The solutions of damped second order hyperbolic problems can
have smooth components which decay slowly and rough components which
decay quickly. If the behavior of the solution is of interest on the time scale of
the slowly-decaying modes, then implicit time stepping methods may be more
efficient than explicit methods.

We formulate and analyze a Galerkin method for approximating the so-
lutions of second order hyperbolic problems. This method involves domain
decomposition in its formulation rather than as a means of solving the elliptic
problems that result at each time step when a usual implicit method is used.

1. INTRODUCTION

Here we present and analyze a domain decomposition method for a damped sec-
ond order hyperbolic problem. This method is closely related to the explicit /implicit
conservative Galerkin method that we developed for parabolic problems [1]. We
exhibit a “conservation of energy” principle for this explicit/implicit method, and
give a simple convergence analysis based on this bound.

The work to take a time step has two phases. The first is an explicit calculation
that defines a function on the interdomain boundaries; this calculation involves a
small amount of communication between adjacent subdomains. The second phase
involves solving a collection of subdomain problems which are completely indepen-
dent of each other. The explicit step induces a time step limitation in terms of
a spatial parameter, but the constraint is less confining than it would be for an
explicit method based on the same function spaces.

2. DOMAIN DECOMPOSITION METHOD

Suppose that u = u(z,y,t) is a smooth solution of the differential equation

(1) up + duy — Au+ku = fon 2x[0,7T) = Q,
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here d and & are nonnegative constants and = (0,1)x (0, 1). Also suppose that
satisfies the boundary and initial conditions

(2) u(m,y,O) = Uo(f’?,y) Onﬂa

(3) ut($9y70) = ul(mvy) on Q,
du

4) 5, = 0onoQx[0T],

where v is the direction perpendicular to the boundary of . Here f,ug, and u;
are given functions, and we want to compute an approximation to u.
The domain 2 is the disjoint union of the following sets:

1
r = {(‘2‘;?/):0<y<1},
Q = {(az,y)GQ:0<x<%},
Q = ﬁ%weﬂzé<x<u.

If v is a pair of functions, one defined on §; and one defined on 2y, we will
identify v with a function defined on Q; UQ,. Note that, for v € H Q) x HY(Q),
u satisfies

15 (s + dia, ) + a(u,v) + /F waleldy = (£,0),
where

0(7/1»77) = a1(¢777) +a’2(¢7"7)a
w@m) = [ Vo Vo ke dody,

v E—I—O L 0

9 'Y v 5_ YY)
/ Yndxdy.

Qluﬂz

The above relation will be discretized to give a Galerkin method for approximat-
ing u. We will use the following notation for At > 0:

v = Y(sAt),
Y = (gl
O = (p*F3 -y /A,
61/)8 (¢s+1 _ dis—l)/(ZAt),
62¢S — (¢5+1 — 2% + ’l/'}s_l)/(At)z,
ws;Q — 0,¢)s+1 + (1 - 29),1/13 + ows—I_

[v](y)
(¥,m)

i

Let M; be a finite dimensional subspace of H 1(£%), and let M be the space of
functions v defined on ; U such that v restricted to ; is in M;,i = 1,2, ie,
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M = Mj x My. Suppose that U3 € M for n = -1,0,1,..., and suppose that
for n > 0 and v € M,

(6)  (BPU™E - dsU™E, v) 4+ a(U™THE,0) +b(U™0) = (f7HEE ),

where the bilinear form b is defined by

$2(z) = max(0,1— |z|),
dom(T) = ¢ ((m— %) /H) /H.
1
B = - [ shuwie i,

b)) = / (B@)[n] + 1B (@))dy.

The function ¢9 g is an approximate one-dimensional delta function, and B is an
approximation of the derivative with respect to x at a point on I". The form b(-, -) is
a symmetric approximation of the part of (5) that is on I'. The form b(-,-) is based
on the family of (nonsymmetric) forms used in [1]. For the analysis of the scheme
presented here it is important that b(-,-) is symmetric. The use of the symmetric
version of the boundary form is reminiscent of the work of Joachim Nitsche in [3].

3. ANALYSIS OF THE DOMAIN DECOMPOSITION METHOD

First we need the basic properties of the form b(-,-). We use || - || as the L2(Q)
norm and for functions in H*(1) x H*(Qs) we define the norm

(7 1P = av.w) + 5 [ [P
Lemma 1. For € H'(Q) x H(£),

a(,9) + b, 9) > L W%

Proof. Integration by parts, application of the Cauchy inequality, and use of a8 <
§a2 + -2—1;,62 for € > 0, give the following relations:

bww) = 2 [ By
= 2 [ banlp)wPiy+2 [ [ orn(@ue )y
= 2 [wravrz [ [ orn@ete i@y

220 [wpPay— Sl

> o [P Gl

In the last step we used € = 3/2. The lemma follows easily. [J

v
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Note that because of the symmetry of b(,-) we have
bYYE,89°) = (bt) - b(y )/ (4A),

where we used b(1) as an abbreviation for b(1, ). We will use this convention on
other bilinear forms as well.

Next we exhibit an “energy equality” for the discrete solution; for this purpose
we take f to vanish identically and d = 0. In (6) use v = SU™ %, multiply by 2 At
and sum on n to get that

(8) o™iz = 1U°|2,
where the “energy norm” is

At?

072 = 10071 + 5 (0 +B)(0™+) + (a4 B©™4)) — Sp(avm).
Since
o) = 2 [ Bl
< 20l |B@) Ly
< 2||[¢HL21")\/‘ Il
we see that

IA

At?
TUOW) < AP0 zacry glOw

2
0917 + 25 (w411 + fom=4 1)
1097+ (MmN + [ ym=H )

provided At < H/2. This gives that the “energy” is nonnegative under this time
step constraint. Similarly, if At < H/4,

IA

IA

9) ™12 > lnwu-" + 1<mw”+% 12+ fllm=)]2).

For each ¢ take W (t) in M to be the projection of u into M with respect to the
form a(:,-); ie., for all v € M,

a(u — W,v) = 0.
If k = 0 define the projection with k replaced by 1. Let
(10) n=u—W.

Theorem 2. Suppose that the solution u is sufficiently smooth and that U3 are
defined by W*s , respectively. Then there is a C' such that

max |0(u — U)"|

2 2.5 _1
<O (88 +H mal xo ey + HH (Il =) + Ili=0) -
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provided At < H/4.

Proof. With pn+3 = §2ynts, ynti = B(unti) —u:+%;%, and 9 = W — U, we get
that

(670", ) + a(9" 555, 0) + 6(3™HE,0) = (o7 4 8P )
(11) ‘ +(utE, e + b+, v).
Express b(9"+3,v) as b(9" 5%, v) — L At20(029™%, v). Use v = 609"+ to get that

1
oy e = 10nIE] = (08 4+ 0%m¥e, 60m8) 4 (uH [s9m )y

(12) +b( T3, 97T,

To get a bound for ¥ from this relation we sum on n and then sum the last
two terms by parts in time (since the energy norm gives no control of the time
differences on I'). The boundary terms that come from summing by parts in time
are (u"t3, [9"+2]) and b(n™tE,97+E). The first of these is bounded by a small
multiple of [|9"]|% plus a O(H®)-term; this gives the H2%-term in the final result.
The second term is similarly treated. The discrete Gronwall inequality then gives
the bound on 9. The triangle inequality is applied to finish the proof. 3

4. NUMERICAL EXPERIMENTS

We first present numerical results on the rate of convergence of the algorithm
described and analyzed above. We consider the following test problem:

(13) uy —Au=f, onx][0,7],

with Q@ = (0,1) x (0,1). We choose f and the initial and boundary data so that
u(z,y,t) = t2cos(wzx)cos(ry). We compare the errors for two domain decom-
position scenarios and a fully implicit Galerkin procedure, by computing e, =
[|8(u—U)(-,1)|| at time ¢t = 1 for 10 by 10, 20 by 20, and 40 by 40 uniform meshes.
In these runs At = h and, in the domain decomposition cases, H = 2h. We note
that the errors are of comparable size for the three cases considered, and approach
zero like A2 + At?. Similar convergence rates were observed for parabolic problems
using the same type of domain decomposition procedure [1], indicating that the
error estimate derived above may not be sharp. In fact, as noted in [1], a better es-
timate than that demonstrated here can be derived for tensor-product rectangular
meshes.

As mentioned in the introduction, our intent in this paper is to study damped
second-order hyperbolic equations. Next we consider the damped equation

(14) ug +ug — Au=0, on(0,1)% x[0,7T],
with

(15) %— = 0ondQx[0,7],
and

(1-2x+y)? z+y<.5
(16) 'LL(.’E: Y, 0) = { 0, Otherwise,
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Implicit 2x1 DD 2x2 DD

h™, H | en, » 10* | Rate | es % 103 | Rate | ej, * 10° | Rate

10,.2] 169.] - | 212 - 278 | -

20, .1 4.33 - 5.26 ~ 6.30 -

40, .05 1.08 1.98 1.28 2.02 1.51 2.10

TABLE 1. Convergence in A: u(x,t) = u;(z,y,t)

(17) ue(x,y,0) = 0.

In Figures 1 and 2, we compare the fully implicit Galerkin solution (no domain
decomposition) at time ¢ = .5 with a 2 by 2 domain decomposition solution. In
these runs an 80 by 80 rectangular mesh was used, with At = .0125. In the domain
decomposition runs, H = 4h. The figures indicate that the solutions are virtually
identical.

The computer simulations described above were run on the Intel iPSC/860 Hy-
percube located at the National Science Foundation Center for Research on Parallel
Computation at Rice University.

5. CONCLUSIONS

A noniterative, conservative, Galerkin domain decomposition procedure has been
presented and analyzed for second order hyperbolic equations. The method uses
nonoverlapping domain decomposition and the calculation of boundary information
is very inexpensive compared to the cost of solving subdomain problems, at least
for medium and coarse-grain decompositions. Because boundary information is
calculated explicitly, the method does require that the time-step and the interface
discretization parameter H satisfy a stability inequality. On two test problems, the
domain decomposition procedure gave numerical results comparable in quality to
that of a fully implicit Galerkin procedure.
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FiGUre 1. Implicit Galerkin solution for damped case

51



52 C. N. DAWSON AND T. F. DUPONT

0.75

0.5}

Y-AXIS

0.25¢

025 0.5 0.75

X-AXIS

FIGURE 2. Domain decomposition-Galerkin solution for damped case



