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A Domain Decomposition Environment
for
Local Time Dependent Problems

F. DELLAGIACOMA, S. PAOLETTI, F. POGGI, M. VITALETTI

ABSTRACT. A framework for parallel computations of local time dependent
problems is introduced. It is based on overlapping domain decomposition
techniques. We also present two examples of gas dynamics simulations.
Numerical results show how the system can be useful in dealing with a
variety of applications.

1. Introduction

The evolution in time of many physical phenomena is described mathemati-
cally by partial differential equations (PDE), whose solution is the primary goal
of numerical algorithms. Initial boundary value problems are encountered in
several application areas, ranging from the air flow around an airplane to the
heat diffusion between bodies at different temperatures, just to mention a few
of them. For this class of problems there are by now well established methods
(e.g. finite differences, finite elements, spectral techniques). which are able to
describe the observed behavior. Three main challenges are represented (1) by
the complex geometries one needs to describe in practical applications, (2) by
the long elapsed times involved in numerical simulations, and (3) by the high
computational costs typically required by accurate schemes. It is therefore natu-
ral to consider the approach based on domain decomposition as a good candidate
to construct appropriate solutions. This is because the partition of the whole
three dimensional region of space into individual subdomains leads to compu-
tational units of smaller size, which are to a large extent independent of each
other. As a result the computation can be performed in parallel, thus decreasing
the overall turn around times, provided that the communication/computation
ratio is a favorable one.
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In this paper we introduce a framework, called Paragrid, suitable for the mul-
tidomain treatment of time dependent, spatially localized problems, described
in general by non-linear systems of PDE. The major underlying assumption con-
cerns the grids associated with each block, which need to be structured and are
required to match at the internal boundaries. Although the time evolution of
the relevant variables is recorded through single time levels, multistep algorithms
(e.g. Runge-Kutta) can also be applied. No further restriction is imposed on
the numerical algorithm. Therefore explicit as well as implicit schemes can be
adopted according to the specific situation one is interested in.” In addition to
the class of problems mentioned above, the conceptually more difficult case rep-
resented by non-local elliptic boundary value problems might be tackled within
Paragrid, by seeking for the steady-state solution of the corresponding fictitious
initial boundary value equations. Another way of obtaining the solution of the
original problem is by resorting to an iterative procedure.

The structure of this paper is as follows. In section 2 we describe the building
blocks of Paragrid, focusing the attention on its general features, instead of
pointing out specific details depending upon any particular implementation.

The study of the inviscid compressible flow for two selected geometries (i.e.
around a sphere and around a swept wing) is the subject of section 3. The
emphasis here is on the effects of the multiblock procedure on the convergence
of the iterative algorithm and on the parallel performance obtained using a
distributed memory system.

2. Paragrid

In the past most effort in the area of domain decomposition has involved the
theoretical study and development of numerical algorithms for elliptic PDE. In
the literature two main approaches are followed: the one based on overlapping
domains, which traces to the pioneering work of Schwarz and the nonoverlapping
method, whose basic idea amounts to find the reduced interface operator at the
internal boundaries. Recently domain decomposition approaches have also been
applied to time dependent problems, like for example, those arising in compu-
tational fluid dynamics' and being described by either hyperbolic?, or parabolic
equations, or even by systems of the mixed type (e.g. elliptic-hyperbolic). The
non linearity of the equations represents a major complication, which makes it
difficult to design efficient numerical algorithms applicable to cases of practical
relevance. It is for time dependent problems with the further property of being
local in space that we introduce Paragrid: a parallel multidomain environment.

The partition of the spatial domain into adjoining, nonintersecting subdo-
mains must be built beforehand. The outcome of the grid generation process
results in a set of discretized grids, for which the further requirement of being
structured and boundary-fitted has been imposed. The first action of Paragrid
is to perform a thorough analysis of each individual block in order to find all
internal boundaries shared by adjacent subdomains. As the ultimate goal of
the numerical algorithm is to determine the evolution in time of field variables,
whose value in a given point depends upon the values in a set of neighboring
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points, some care must be taken at the internal interfaces and in their vicinity.
In fact for such grid points the knowledge of the field in the neighboring do-
main might be necessary. This requirement is met by extending the originally
nonoverlapping subdomains (i.e. the cores) in such a way as to include a certain
number of additional points, thus forming a so-called interaction region. The
size of the interaction region is controlled by a geometric parameter, which is
specified in input. As a result of the enlargment procedure, data belonging to
the overlap zones are duplicated to insure consistency of the computation car-
ried out in each individual domain. The exchange of the relevant information at
each time step brings up the important issue of the updating cycles concerning
dynamic variables. As a matter of fact three stages characterize every single
cycle. Namely:

o the data IMPORT from core volumes into the overlap regions. Such data
are known at the current time instant.

e the field variables UPDATE performed by the chosen numerical algo-
rithm.

¢ the EXPORT of the updated quantities from cores into interaction zones,
where these quantities will be used in the next updating cycle.

After each time step the partial solutions are brought together to form the
global solution. From the structure of the time marching strategy illustrated
above it emerges that computations relative to individual subdomains can be
performed in parallel, data exchange along with synchronization being required
only at the end of each updating step. As the framework has been designed to
take care of many tasks including process scheduling, communication and even
dynamic load balancing, it turns out to be a powerful tool to study a broad
class of algorithms and their application to complex geometries. Moreover the
coordination of the single computations is achieved through general procedures,
which are independent of both the physical nature of the field variables and
of the parallel computer architectures. It is important to emphasize that the
interaction between adjacent subdomains is managed through initial conditions
expressed in the overlap regions. Although one step explicit formulas for time
integration fit naturally in this framework, multistep explicit methods can be
incorporated without much effort, as the system allows the user to keep track of
the variables as computed in previous stages. Special attention deserve implicit
algorithms, because the new field values depend on points of the whole space
at the previous time. Since only local field equations can be managed within
Paragrid, the assumption of admitting exchange of information between pairs
of neighboring domains. disregarding any interaction with those lying further
away, must be carefully justified.

3. Numerical Results

In the last section we have outlined the basic overlapping domain decom-
position strategy of Paragrid. Let us now study the external compressible flow



364 F. DELLAGIACOMA, S. PAOLETTI, F. POGGI, AND M. VITALETTI

in three dimensional space, surrounding two objects, whose geometry has been
chosen for illustrative purposes. For simplicity let us focus our attention on
the inviscid case, which is described by the Euler equations. Using the strong
conservation law they are expressed as follows:

(1) 0:q -+ OF +0,G+ 9K =0

where q denotes the array of the dynamic variables containing mass, momentum
and energy densities, F, G, K are the flux vectors and the body-fitted curvilin-
ear coordinates are denoted as £ = &(z,v,2,t), n=mn(z,y,%1t), (={(z,y,21).

Time integration is performed through an implicit Euler backward algorithm
of the first order, whereas space derivatives are discretized by a centered finite
difference scheme. Furthermore the flux vectors are expanded in terms of the
discrete variables q" = g(nAt). Keeping only linear terms and applying the Al-
ternating Direction Implicit (ADI) approximation® to the differential operator,
we have to solve the linear system of algebraic equations:

) [1+ Atd:A"] [1+ Atd,B"] [1 + Atd,C"] Aq® =
—At [(0:F") + (0,G™) + (0. K")]

with A™ = gF"/0q , B" = 0G"/dq , C* = 0K"/0q being the Jacobians
of the flux vectors and Ag™ = g™*! — q®. A particular form of the artificial
dissipation? is added to eliminate from the solution spurious oscillations and to
enable the use of large values of the Courant number.

The system is solved for a medium size (40,375 nodes, 180,480 equations per
time step), three dimensional problem corresponding to the compressible tran-
sonic flow around an ONERA M6 swept wing. The numerical results illustrating
the convergence history of the algorithm are shown in Figure 1 and Figure 2.

Two different decompositions (i.e. 15 and 30 blocks) are compared with
the computation performed on a single structured grid covering the entire do-
main. It is seen that doubling the number of domains does not penalize too
seriously the number of iterations necessary to reach the stationary state. Fur-
thermore, by increasing the size of the overlap (i.e. the number of grid layers)
between adjacent blocks, convergence is achieved much faster, even though the
computational cost per domain is higher and a larger amount of data needs to
be exchanged at each time step.

One of the major advantages of domain decomposition is represented by its
potential for parallelization. We have studied such aspect in the framework of
Paragrid by running applications on a distributed memory system formed by
several workstation. As an example we report in Table 1 results obtained for the
simulation of the external compressible flow around a sphere. Even by connect-
ing just a few computational nodes, remarkable performances compared to the
sequential runs are obtained . A key role in parallel implementations is played
by load balancing, since for homogeneous networks the total elapsed time is ba-
sically determined just by the most loaded processor. Another crucial aspect
concerns high speed communication, which might further improve the overall
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Figure 1: Convergence history of inviscid transonic flow for a given angle of
attack o , Mach number M,, and overlap = 1.
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Figure 2: Effect of the overlap in the multiblock calculation of the convergence
history of the same inviscid transonic flow as in Figure 1.

Total Residual Norm ONERA M6 WING (a = 0°. M = 0.92)

L T | I ] | 3

15 Blocks Overlap 1 — |

0.1 = 15 Blocks Overlap 2 — 3

Y 1 Block ---- 1

0.01 3 E

0.001 [ 5

0.0001 1

le-05 ;" _f

le-06 L : : ‘ - '

0 50 100 150 200 250 300

Tteration Step



366 F. DELLAGIACOMA, S. PAOLETTI, F. POGGI, AND M. VITALETTI

performance, especially for those applications for which data exchange happens
to occur very often.

From our analysis it should be evident that the attractive features of domain
decomposition ideas can be combined with the advantages offered by parallel
architectures. This opens up the possibility of studying realistic applications
involving complex geometries, but exploiting advanced numerical techniques.

Table 1: Compressible flow simulation around a sphere.
Performance vs. N (number of IBM RS/6000 mod. 530H workstations)

N Elapsed Time [sec] Speed Up
1 6698 1

37 2268 2.95

4% 1845 3.63

1 Nodes connected via SOCC (Serial Optical Channel
Converter).
1 Nodes connected via Token Ring,.
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