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The Schur Complement Algorithm for the
Solution of Contact Problems

ZDENEK DOSTAL

ApsTrRACT. We present a modification of the Schur complement algorithm
for the solution of the systems of linear equations in order to solve quadratic
programming problems with inequality constraints. We give elementary
proof that the algorithm is correct and discuss possible improvements.

1. Introduction

The problem to find an equilibrium of bodies in contact is of natural interest
for the domain decomposition methods. This statement is based on two obser-
vations. First, the physical domain of such problems often consists of several
subdomains, so that no additional data describing the decomposition of the do-
main are necessary. Second, the numerical solution of such problems is usually
reduced to numerical solution of the sequence of related linear problems, so that
there is a good chance that some more expensive preliminary computations may
pay off.

In this paper, we present the basic nonoverlapping domain decomposition
algorithm which combines the well known conjugate gradient algorithm for the
solution of quadratic programming problems and the basic Schur complement
precondtitioning. The minimization of the energy functional on each subspace
generated by the active set strategy is carried out in two steps. First the func-
tional is minimized on interiors of subdomains using the Schur complement in
some conjugate projector, which amounts to the solution of Dirichlet problems
for all subregions. Then the same projector is used to the preconditioning of
auxiliary linear problem.

The algorithm has already been described in Reference 4, however, here we
give different reasoning to show that the algorithm is correct under relaxed as-
sumptions. We restrict our attention to the numerical solution of discretized
contact problem without friction formulated in terms of quadratic programming
as described in References 1,2 and 6.
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2. Notations and preliminaries

Let K denote the stiffness matrix of the order n resulting from the finite element
discretization of a system of elastic bodies which occupy regions €, -, €. For
simplicity, we suppose that bilateral boundary conditions are enhanced in K.
With suitable numbering of nodes, we can achieve that K = diag(Ks,-- -, Kp),
where K is banded stiffness matrix of the body which occupies the region €2;.
The matrices K; are known to be possitive semidefinite.

The linearized incremental contact conditions are supposed to be defined by
the matrix B and the vector ¢,

b{- "1
B=(by,..,bi)=1|: |, ¢=
by. Vi

The columns b.; of B are vectors which enable us to evaluate the change
of the distance v; > 0 between two potential contact surfices in a reference
configuration in a given pair of nodes; the formula for the displacement v is b%u.
The matrix B is sparse as nonzero entries of b.; may be only in positions of nodal
variables which correspond to the nodes involved in some constraint.

Let U; denote the matrix which we obtain from the identity matrix of the
order n by crossing out the columns which do not correspond to the displacements
of nodes in the interior of ;. Thus U; is the 0-1 matrix that maps the local
displacements of interior points of ; into the global displacements and BTU; =
0.

For any subset J of {1,...,k}, denote by B” and ¢’ the parts of B and ¢
consisting of the columns b.;,7 € J and +;, respectively.

Our problem is to minimize the energy functional

W () = gu" Ko [T
on the set

B={u:BTu<c}

3. CG on the range of symmetric matrix

Let us recall here few observations which are useful for minimization of the
energy functional on the range % of a symmetric positive semidefinite matrix ¢
by the CG method. For any M € R™ and b € R™, let .#;(b, M) denote the
subspace which is spanned by b, Mb. ..., AM*"'b, and put J#; = (b, KC).
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It z; € #; minimizes j(u,b) for u € C.¢, then r; = b — Ki; is orthogonal to
C4;, so that Cry is orthogonal to J#;. Moreover, r; € #;,; and Cr; = o implies
J(@s,b) = min{j(u,b) : u € €}

As KCX#;_, C #; and Cr; is orthogonal to .%#;, it follows that Cr; is orthog-
onal to KCJ¥¢;_1, so that Cr; is K-conjugate to C.%;_1.

Now suppose that pg,...,p;—1 form the K-conjugate basis of CH;, j=
1,...,4. Then, if Cr; # o0 and Kp;_; # o, we can extend py,...,p;—1 to the
basis of C %, by taking

(2) p; = Cry — Biapi_a, Bic1 =1 CKpi—1/pr (Kpi_1.

Thus we can get K-conjugate basis of C.#; by the reccurrence (2) starting from
po = Cb. Computation of z; is then reduced to the standard one dimensional
searches

(3) T = @1 F QaPim1y Qg =T 1 pio1 /P Kpiq

starting from o = 0. If Cr; # 0 and Kp;_1 = o, then, using recurrences for p;
and r; and orthogonality relations, it may be shown that

J(@icy + opi1,b) = j(mi—1,b) — arl Cr;—4

so that no minimum of j(u,b) exists and p;_ is the decrease direction.

4. Projector preconditioning on subspace

We shall exploit the observations of the Section 3 to shape the algorithm which
first looks for the minimum on a subspace % C % and then continues by itera-
tions. The subspace % will be defined as the range of a full rank matrix U. We
suppose that UT KU is invertible.

Using the gradient argument, we observe that min j(u,b) for u € % is at-
tained at

(4) zo = U(UTKU)~'UTb.
Now let us introduce the conjugate projector @ = I — U(UYKU)"'UTK
with the range ¥ = (K% )" and notice that
(5) QECt QTro=r, and KQ=Q"KQ=Q"K.
Let us show that ¥ N¥ is the range of QCQT.

LenMMA 1 If C is positive semidefinite, then the range of QCQT is ¥ N'F.

PROOF: Suppose that x € ¥ N ¥, so that there are y € 6 and z € ¥ such that
z=Cy=Qz AsQ? = Q, it follows that = belongs to the range of QC. On the
other hand. if z = QCy, then x € ¥ N% by (5).

As (' is positive semidefinite, it follows that there is positive semidefinite
C''/2 with the same range %, so that ¥ N% is equal to the range of QC1/2. To
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finish the proof, it is enough to observe that the range of QC'/2 is the orthogonal
complement of the kernel of CY/2QT and that the kernel of C*/2QT is that of
QCQr. m|

Now we can look for z. which minimizes j(z, + 4,b) or j(u,b — Kz,) for
u € ¥ NG using the formulae (2) and (3) with C replaced by QCQT.

If ¢ = R™ and K is invertible, the algorithm reduces to the projector precon-
ditioning algorithm whose preconditioning effect has been studied in Reference
5.

5. Algorithm

The proposed algorithm reads as follows:

A. Initialization

(i) Define U = (Uy,...,Up,). It follows that BTU = O, or, in other words, that
the range % of U satisfies % C #. Moreover, v € # implies u+ % C #.
We shall suppose that UTKU is invertible.

(ii) Find the factorization LLT = UT KU = diag(U{ K1U1, ..., UT KpUy).

(ili) w=o,r = f.

B. Update of the set of active contraints
(iv) Put J = {i:bTu=y}.
(v) Extend U to the full rank n X m matrix V = (U, V;;) whose range form the

basis of the kernel %7 of B/T and whose blocks satisfy UTV, = O. Details
may be found in Reference 4.

C. Reducing the residuum on % .
(Vi) u=u+ULTL Uy

(vii) r=f—Ku, p=VVTr.

D. Test of the residuum and of the contact conditions.
(viii) r0=VTr.
(ix) If | 70 |5 0 go to (xiii).
(x) Evaluate the Lagrange nwiltipliers A; by solving BT\ = 7.

{xi) If all A; are greater or equal to zero go to (xx).
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(xii) Remove from J indices of negative A; and go to (v).

E. Conjugate gradient iterations on (K% )+ N %’
(xiii) ¢ = (I — UL TL7YUTK)p.
(xiv) If K¢ # o, then put @ = rT¢/q" Kq and

Y
al:min{%b—rzﬁgzbf‘gq>0}.

If Kg = 0 and oy is not defined (minimum over empty set), signal no
solution and stop.
If Kg = 0 and o is defined, put o = ol.

(xv) v =+ min{a, al)g.
(xvi) r =r — min(e, al}Kq.
(xvii) 8= rTVVTKq/qT Kq.
(xviii) p=VVTr — gp.
(xix) If @ < al go to (viii), else to go (iv).

(xx) Return u as the desplacement of the solution. Nodal contact forces may
be extracted from A.

Apart from the observations of Section 4 applied to C = VVT, we have used
the identity Q7r = », which is a consequence of (5) and (xvi). The algorithm
differs from the standard active set algorithm in two steps minimization (parts
C and E of the algorithm), so that it preserves its finite termination property.

6. Comments

The algorithm is the domain decomposition algorithm due to the special choice
of U which implies that UT KU is block diagonal, cach diagonal block being the
stiffnes matrix of the body £2; with enhanced Dirichlet conditions. Thus the
decomposition of (ii) reduces to the decomposition of blocks which may be done
in parallel. The same holds for the implementation of the most expensive steps
(vi) and (xiil). which involve solution of the Dirichlet problem for each domain.

If the matrix VIRV is regular, the preconditioning effect which results from
reduction of the problem to the boundary and contact zone may be observed.
The point is that this reduction is performed by means of the projector which
does not change with the change of the active sets. The algorithm has been
implemented for the solution of 2D contact problems and it has been shown that
even in serial implementation there are problems for which the performance of the
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algorithm is considerably better than that of the standard active set algorithm.
Details may be found in Reference 4.

We belive that some improvement may be achieved with additional precondi-
tioning and with improved strategy of the update of the active set. For example
the preconditioner of the References 3, 7 and 9 may be useful as it is efficient and
its update to the current contact surface may be not expensive. The inspiration
for modification of the update of the active set may be found in Reference 8.
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