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Some Recent Results on Schwarz Type Domain
Decomposition Algorithms
Maksymilian Dryja* and Olof B. Widlund®

Abstract. Numerical experiments have shown that two-level Schwarz methods,
for the solution of discrete elliptic problems, often perform very well even if the
overlap between neighboring subregions is quite small. This is true to an even
greater extent for a related algorithm, due to Barry Smith, where a Schwarz algo-
rithm is applied to the reduced linear system of equations that remains after that
the variables interior to the subregions have been eliminated. A supporting theory
is outlined.

1. Introduction Over the last decade, a considerable interest has developed
in Schwarz methods and other domain decomposition methods for elliptic partial
differential equations. Among them are two-level, additive Schwarz methods first
introduced in 1987; cf. Dryja and Widlund [16,13,17,18,29]. As shown in Dryja
and Widlund [18], a number of other domain decomposition methods, in particular
those of Bramble, Pasciak, and Schatz [3,4], can also be derived and analyzed
using the same framework. Recent efforts by Bramble, Pasciak, Wang, and Xu [5],
and Xu [30] have extended the general framework making a systematic study of
multiplicative Schwarz methods possible. The multiplicative algorithms are direct
generalizations of the original alternating method discovered more than 120 years
ago by H.A. Schwarz [23]. For other current projects, which also use the Schwarz
framework, see Dryja, Smith, and Widlund [15], Dryja and Widlund [19,21] and
Widlund [29]. Proofs of most of the results of this paper can be found in Dryja and
Widlund [20] or can be derived straightforwardly using the same technical tools.
Here we will only discuss the additive algorithms.
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We begin our discussion by reexamining the block-Jacobi/conjugate gradient
method applied to finite element approximations of linear, second order, elliptic
problems. Upper and lower bounds on its rate of convergence are given. This anal-
ysis pinpoints the weakness of the method and suggests two means of improvement,
namely the introduction of overlap between the diagonal blocks and the addition
of a component of the preconditioner corresponding to a second, or more, levels
of discretization. When a two-level method is used, the restrictions of the discrete
elliptic problem to overlapping subregions, into which the given region has been de-
composed, are solved exactly or approximately. In addition, in order to enhance the
convergence rate, the preconditioner includes a global problem of relatively modest
dimension.

The main result of our early study of two-level Schwarz methods shows that
the condition number of the operator, which is relevant for the conjugate gradient
iteration, is uniformly bounded if the overlap between neighboring subregions is
sufficiently generous in proportion to the diameters of the subregions.

Our current work has been inspired very directly by several series of numerical
experiments that indicate that the rate of convergence is quite satisfactory even for
a small overlap and that the running time of the programs is often the smallest
when the overlap is at & minimum. The number of conjugate gradient iterations
is typically higher in such a case but this can be compensated for by the fact that
the local problems are smaller and therefore cheaper to solve; cf. in particular
Bjgrstad, Moe, and Skogen [1], Bjgrstad and Skogen [2], Cai [6,7], Cai, Gropp,
and Keyes [8], and Skogen [24]. If the local problems are themselves solved by an
iterative method, then a smaller overlap will give better conditioned local problems
and therefore a higher rate of convergence; see Skogen [24] for a detailed discussion
of this effect. All this work also shows that these algorithms are relatively easy
to implement. Recent experiments by Gropp and Smith [22] for problems of linear
elasticity provide strong evidence that these methods can be quite effective even for
very large and ill-conditioned problems. We can show that the condition number
of the preconditioned operator for the algorithm, introduced in 1987 by Dryja and
Widlund [16], is bounded from above by const.(1 + (H/§)). Here H measures the
diameter of a subregion and & the overlap between neighboring subregions; thus
H/6 is a measure of the aspect ratio of the subregion common to two overlapping
neighboring subregions.

Our main focus is a very interesting method, introduced in 1989 by Barry Smith
[27,25]. It is known as the vertez space (or Copper Mountain) algorithm. Numerical
experiments, for problems in the plane, have shown that this method converges
quite rapidly even for problems, which were originally very ill-conditioned, even if
the overlap is very modest; cf. Smith [25]. For additional work on variants of this
method, see Chan and Mathew [9,10], Chan, Mathew, and Shao [11].

When Smith’s algorithm is used, the given large linear system of algebraic e-
quations, resulting from a finite element discretization of an elliptic problem, i#
first reduced in size by eliminating all variables associated with the interiors of
the non-overlapping substructures Q; into which the region has been subdivided.
The reduced problem is known as the Schur complement system and the remaining
degrees of freedom are associated with the set {8Q;} of substructure boundaries,
which form the interface I' between the substructures. The preconditioner of this
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domain decomposition method, which can be classified as a Schwarz method on
the interface, is constructed from a coarse mesh problem, with the substructures
serving as elements, and a potentially large number of local problems. The latter
correspond to an overlapping covering of I', with each subset corresponding to a
set of adjacent interface variables.

Smith’s main theoretical result, given in [27,25], is quite similar to that for the
original two-level Schwarz method; the condition number of this domain decompo-
sition algorithm is uniformly bounded for a class of second order elliptic problems
provided that there is a relatively generous overlap between neighboring subregion-
s that define the subdivision of the domain decomposition method. We can now
show that the condition number of the iteration operator grows only in proportion
to (1+1log(H/6))2. Even for a minimal overlap of just one mesh width h, which cor-
responds to a block Jacobi method enhanced by a coarse space solver, this bound is
as strong as those for the well known iterative substructuring methods considered
by Bramble, Pasciak, and Schatz [3,4], Dryja [12], Dryja, Proskurowski, and Wid-
lund [14], Smith [26], and Widlund [28]; cf. also Dryja, Smith and Widlund [15].
We also note that the successful iterative substructuring methods for problems in
three dimensions, require the use of more complicated coarse subspace and that
therefore Smith’s method seems to offer an advantage.

2. The Finite Element Problem and Block-Jacobi Methods

We write our continuous and finite element elliptic problems as: Find u € V,
such that

a(u,v) = f(v),:Yve V:,

and, find uy, € V*, such that
(1) a(un,vp) = flvp),:Vop € VP: |

respectively. We assume that the bilinear form a(u, v) is selfadjoint and elliptic and
that it is bounded in V x V. In the case of Poisson’s equation, the bilinear form is
defined by

(2) ag(u,v) =/S;Vu-Vv: dz: .

The bilinear form a(u,v) is directly related to the Sobolev space H 1(Q) that is
defined by the semi-norm and norm

lulfql(n) = ag(u,u) and ||U”fr;1(9) = l"ﬁ{l(n) + ”u“%%n)s

respectively. To avoid unnecessary complications, we confine our discussion to
Poisson’s equation, to homogeneous Dirichlet conditions, to continuous, piecewise
linear finite elements and to a polygonal region € in two or three dimensions. It is
well known that the resulting space V* ¢ V = H}(f), i.e. it is conforming.

The finite element problem (1) can be written as a linear system of algebraic
equations

(3) Kz =hb,
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where the elements k; ; = a(gi, ;) of the stiffness matriz K are given in terms
of the finite element basis functions ;. The right hand side, b, has components
b; = f(;). In addition, we assume that the fine triangulation, associated with vh
is obtained through the refinement of large elements, the substructures, £;,i =
1,---,N. We call the corresponding finite element space VZ. We note that V¥ C
V* and we assume that the two triangulations are shape regular. -

The standard block-Jacobi method corresponds to a block diagonal precondi-
tioner Ky which is the direct sum of diagonal blocks of K. Each block corresponds
to an index set A;. Without limiting the generality, we here assume that A is
associated with the nodes of §2; and some of those of its boundary 95);. There is no
overlap between the index sets, but we note that any two sets

Qi n = Ujen; supp(v;)

that correspond to neighboring substructures have an overlap on the order of h.
This follows from a well known property of the support, supp(p;), of the basis
functions. We also note that a subspace is associated to each index set. Additive
Schwarz methods, of which this block Jacobi method is a simple example, are often
described in terms of subspaces V; and projections onto these subspaces. Here we
will primarily use matrix language.

The rate of convergence of this preconditioned conjugate gradient method is
estimated in terms of the condition number

(K7 K) = Anao(K7 K) [ Amin(K7 1 K).

It is easy to show that the eigenvalues of K 1K are given by the Rayleigh quotient

) T oltow) 5~ Vi

a(u,u) , U= 2 Uiy, Us € V5.
' In the block Jacobi case, and indeed for all methods considered in this paper, it
is easy to derive an upper bound for the eigenvalues of K ;1K , which is independent
of h and H. A sharp lower bound can be derived quite directly from an explicit
formula for the u;. The crucial bound, obtained by using calculus, is

H 1
(5) a(ui, ug) < (14 C5-)ag,, (u,u) + C gl -

¢(From this bound, which cannot be improved, we see that Ay (K;'K), disap-
pointingly, is on the order of Hh. We note that it was shown in Widlund [28] that
any preconditioner built only from solvers on local subregions of diameter on the
order of H, necessarily must satisfy x(P) > C/H?.

3. Remedies There are two simple devices that can help improve the perfor-
mance of methods of this kind.

The first involves the introduction of a set {Q; s} of overlapping subregions con-
structed from the substructures Q; by including all degrees of freedom of all nodes
within the distance & of the substructure. Tt is shown in Dryja and Widlund [20]
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that this results in an estimate such as (5) with h replaced by é. In the proof of
this result the following representation is used,

a(P Yu,u) = i fu=y u, 0(Ui, Us);

cf. formula (4). Here P = Eil P; is the operator relevant to the iterative method
being considered, with the P; the a-orthogonal projection onto the subspace V;.
The subspaces V; no longer form a direct sum and the freedom of choice in the
representation of u can be turned to an advantage.

The second remedy is the introduction of a component corresponding to the
coarse space V. Algorithmically, this is accomplished by adding a term
RT(KH)"!R to the preconditioner based on the local problems alone. The ma-
trix R, which represents a restriction operator, is rectangular, with one row for
each interior vertex of the coarse triangulation, and it expresses the standard basis
functions in V¥ in terms. of the standard basis of V*.

The following result is established in Dryja and Widlund [20].

Theorem 1. For the method which uses the coarse space V¥ and an overlap
of order § between the subregions, the condition number of the additive Schwarz
method satisfies

k(P) < C(1+ H/6).

The constant is independent of the parameters H, h and é.

4. Smith’s Algorithm This method has previously been described in Smith
[27,25]. In the first step of this, and many other domain decomposition methods,
the unknowns of the linear system of equations Kz = b that correspond to the the
interiors of the substructures are eliminated. We proceed as follows:

Let K® be the stiffness matrix corresponding to the bilinear form agq (un,vp)
which represents the contribution of the substructure £2; to ag(up,vp). Let z and
y be the vectors of nodal values that correspond to the finite element functions
uy, and vy, respectively. The stiffness matrix K of the entire problem can then be
obtained by using the method of subassembly defined by the formula

TKy =3 a0 Ky,
i

Here z(® is the subvector of nodal parameters associated with the closure of ;.
The matrix K@ is defined by

( K K{) )
K{3" Kgp

and the subvector (¥ is divided into two, z? and mg), corresponding to the vari-
ables which are interior to the substructure and those which are shared with other
substructures, i.e. those associated with the nodal points of 9€);. Since the interior
variables of {); are coupled only to other variables of the same substructure, they
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can be eliminated locally and in parallel. The resulting reduced matrix is a Schur
complement and is of the form

Q 0 = K8 - KKK,

JFrom this follows that the Schur complement, corresponding to the global stiffness
matrix K, is given by S where

) L Syp = ng)TS(i)yg).
: i

Thus, if the local problems are solved exactly, what remains is to find a sufficiently
accurate approximation of the solution of the linear system

(8) Szp =bg.

Problem (8) is solved by an iterative method of additive Schwarz type. The most
important difference between this algorithm and that of the previous subsection is
that we are now working on I' = |J 8%; \ 69

Smith’s algorithm can now be described in terms of subspaces or alternatively
in terms of index sets. We use the same coarse space as in the previous subsection,
i.e. VH but we restrict its values to I'. In the case when the original problem is
two dimensional, we introduce one subspace for each interior edge and vertex of
the substructures. An edge space is defined by setting all nodal values, except in
the interior of the edge in question, to zero. Similarly, a vertex space is obtained
by setting to zero all values at the nodes on I that are at a distance greater than
§. For many more details and a discussion of implementation details, see Smith
[27,25].

In the case when the original problem is three dimensional, we introduce one
subspace for each interior face, edge, and vertex. The elements of a face subspace
vanish at all nodes on T" that do not belong to the interior of the face. Similarly,
an edge space is supported in the strips of width §, which belong to the faces which
have this edge in common. Finally, a vertex space is defined in terms of the nodes
on I' that are within a distance § of the vertex.

The following result is established in Dryja and Widlund [20]. The bound is
stronger than in Theorem 1. Technically, this is related to the fact that we now
work in the trace space H'/2(I") instead of the orginal space H((2).

Theorem 2. The condition number of the vertex space method satisfies
x(P) < C(1+ log(H/6))%.
The constant is independent of the parameters H, h and 4.
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