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ABSTRACT. In the numerical solution of scattering problems, an important
computational kernel problem is that of solving the Helmholtz equation on
regular domains with so-called approximative radiation conditions imposed
on the boundary. While very efficient techniques are available for solving
Helmholtz equations on regions such as rectangles and circles, these can
often not be applied due to the radiation condition. Our domain decompo-
sition approach to solving this problem consists of separating the interior
problem from the boundary problem, solving each problem separately and
then iterating to obtain a solution of the complete problem. This can be
described as preconditioning the suitably reordered system and applying
one of the many iterative methods for non-Hermitian systems. The pre-
conditioning step avoids the difficulty of the radiation condition, and can
thus be performed using a fast solver.

1. Introduction

An often occuring problem in mathematical physics [5] is that of computing
the scattered field of an object upon which monochromatic acoustic or electro-
magnetic waves are impinging. Assuming a unit index of refraction and harmonic
time dependence, the wave field satisfies the Helmholtz or reduced wave equation

—Au—ku=f
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outside of the domain occupied by the scattering body, on the boundary of
which suitable boundary conditions depending on material properties are im-
posed. Here, k& denotes the wave number and f is a sufficiently regular source
function. In addition, to make the solution of this problem unique, an asymp-
totic condition for the behavior of the solution far away from the scatterer is
needed, the well-known Sommerfeld radiation condition

Ou . 1-d

———zku=o(r z ) as r — oo,

on

in which r denotes the distance from a fixed point (usually near the center of the
scatterer) and d denotes the dimension of the underlying space. We will only
consider two dimensions here. Physically, this condition causes the solution to
be an outgoing wave. '

To render this problem numerically tractable, the exterior problem needs to
be restriced to a finite computational domain. Thus, the scattering body is
imbedded into some regularly shaped auxiliary domain such as a circle or a
rectangle. Instead of the Sommerfeld condition at infinity, an approximation to it
is imposed on the boundary of the auxiliary domain. One class of approximations
consists of differential operators, which annihilate as many terms of a far-field
expansion of the solution as possible [4]. The simplest (and crudest) of these is
obtained simply by applying the Sommerfeld condition

Qﬁ—iku:O

on

on the artificial boundary rather than at infinity. The partial derivative with
respect to n denotes the derivative in the direction of the outer normal of the
boundary. The higher the order of the differential operator occuring in the
boundary condition, the smaller the auxiliary domain can be made to achieve
the same accuracy of approximation. We intend to look at higher approximations
in future reports.

Finally, there are techniques by which the boundary condition on the scatter-
ing body can be eliminated, further simplifying the problem. These are Lagrange
multiplier techniques (cf.[6]) and the capacitance matrix method (cf.[1, 2, 9]).
The latter uses a discrete analog of potential theory to write the problem with-
out the scatterer as a low-rank modification of the original problem. After these
simplifications have been applied, the problem takes on the shape in which we
will approach it, namely

~Au—~k*u=f iR

o
2 _iku=0 on OR.
on
The domain R = (0,1) x (0, 1) is the unit sqare, k is real and u and f are complex

valued functions defined on the closure of R.
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If the problem is discretized using finite differences on a regular mesh, the
resulting linear system of equations has block tridiagonal structure. For prob-
lems of this type resulting from the discretization of separable elliptic boundary
value problems on rectangles or circles, so-called fast solvers can solve the lin-
ear system in O(N?2log N) arithmetic operations, N being the number of mesh
points in one direction [3, 10]. However, due to the radiation boundary con-
dition, these techniques cannot be applied to our problem in any obvious way.
Thus, we attempt a domain decomposition approach which separates the interior
unknowns from the boundary unknowns, solves these two problems separately
in an efficient way, and uses an iterative method to put the solutions together.
Since we can apply fast solvers to the interior problem, we can very efficiently
precondition with the solution of the interior problem. If the number of itera-
tions needed to solve this preconditioned problem can be bounded independent
of the mesh-size, this approach can itself be regarded as a fast solver. Although
we have not been able to prove the existence of such a bound, the numerical
results presented in Section 4 seem to suggest this to be the case.

2. Discretization of the problem

In this section, the linear system arising through one simple finite-difference
discretisation of the problem is derived. For now, we are not concerned with the
exact order of the discretization error, noting only that standard error estimates
show it to be at least O(h) [8].

If we discretize the equation with the five-point discrete Laplacian and the
normal derivatives in the boundary condition with one-sided differences using a
uniform mesh-width & = 1/(N + 1) we arrive at the linear system

Ax =D

for the values of the solution on the mesh, where

T ~I

-I T -I
. c C(N+2)2><(N+2)2,
I T —~I

-1 T

I denotes the identity in CN*2 and T is given by
3 — k2h2 — ikh -1
-1 4—-k*n* -1

—1 4—E%n? -1
-1 3 — k2h% —ikh
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The matrix T is a shift of T by the mesh dependent constant o = —1 — ikh, i.e.
T=T+al.

In order to write the system in a more compact fashion, we introduce the two
auxiliary matrices
0 1 1
1 0 1 0 0 0
J= et and V=

1 0 1
1 0

Now, using Kronecker sums and products, we can write A as
(I®T)+(aV~-J)RI =T (aV - J).

3. Preconditioned Iterative Methods

In the absence of a fast direct solver, the size and sparsity of the discretization
matrix suggests using an iterative method to solve the discretized Helmholtz
equation. Since the system is non-Hermitian, one of the recently developed
Krylov subspace methods such as BCG, GMRES or QMR. suggest themselves.
We chose the latter due to the short recurrences it uses to compute the iter-
ates, making it a very efficient method. Of course, this alone does not yield
a fast solver. However, if the number of iterations needed to achieve a given
residual norm reduction can be bounded independently of the mesh size, a very
efficient method results. To keep the number of iterations low, it is necessary to
precondition the system, i.e. to modify it to either

M Ax =M
or
AM_ly-—_b7 Mx =1y,

where M~ is an approximation of the inverse 4~1 of A.

As in other iterative methods of this type, this results in having to solve an
additional linear system involving the matrix M at each step of the iteration. A
fast algorithm is obtained by choosing the preconditioner M such that standard
fast solvers such as Fourier techniques or cyclic reduction can be used to perform
the preconditioning step.

In the following, after a brief description of the QMR method, we present
several different ideas for obtaining preconditioners for our problem.
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3.1. QMR. The iterative procedure we chose for our computations is the
recently proposed QMR method of Freund and Nachtigal [7], which is a Krylov
subspace method that uses the nonsymmetric Lanczos process to generate the
bases for the Krylov subspaces. This combines the short recurrences of the BOG
method with a quasi-optimality property for minimizing the residual in the cur-
rent Krylov space. Also, to remedy the exact and numerical breakdowns to which
the Lanczos process is susceptible, so-called ‘look-ahead’ techniques are usually
employed in QMR to skip over non-existing Lanczos vectors, making QMR a very
robust algorithm. In our computations, no look-ahead was performed since the
class of problems was a very restricted one and breakdowns were not observed.

For later reference, we give a short summary of the QMR algorithm. The
iterates x,,, m =0,1,... are chosen such that

Xpn EXO+K.,,,(I‘0,A), ro = b — Axy,

where K, (1o, A) is the n-th Krylov space of A w.r.t. the initial vector ro. The
nonsymmetric Lanczos process for generating a basis for K,, with which to con-
struct the iterates, is summarized as follows:

LANCZOS ALGORITHM.

set vg = Wp = 0

vy =rg/||rol|, Wy arbitrary, ||wi] =1

forn=1,2,...
6, =WI%,, if6,=0set L=n—1,stop
Vo = {’n/’)’n
Wy = Wn/ﬂn
TnBn = bn
a, = wZAv.,L
Vg1 = AVy — 0V — BuVaa
Wntl = ATwn — Wy — YTnWnp-1
if ¥,41 = 0 or W,+1 = 0 then stop.

This yields

K,(A,rg) = span(vy,ve,...,Vn)

Kn(AT, wi) span (Wi, Wa,... ,Wy),

i.e. a basis for the Krylov space of AT is also generated. The bases satisfy the
relations

AV, = ViH,+[0 ... 0 V41 ]

ATW, = WLHF+[0 ... 0 Wpy1 ]
wIv, I

i
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where the matrices V, and W,, contain the columns viandw;, j=1,...,n, re
spectively. The matrix H, is the tridiagonal matrix associated with the Lanczos
process:

H,=[1I, 0]H®

where i
[ o1 s
Yo a2 s
H’S’e)= .-' . -.. EC("+1)X".
) ) ﬂn—l
T Oy
| 0 0 e i

These quantities having been generated by the Lanczos process, the QMR iter-
ates are obtained by writing the residual of the n-th iterate X, = Xg + V25,
where z,, € C", as

Th =b—Ax, =19 — AV,2, = n+1 (dn - Hff)zn)
and quasi-minimizing the residual by choosing z,, to satisfy

lldn — Hr(ze)zn” = ngg" lldn — H7(;e)zn”

We note here a property of QMR which will be important with regard to choosing
preconditioners later. The QMR residuals satisfy the following error bound due
to Freund and Nachtigal [7]:

THEOREM 3.1. If the n X n matrix H,, generated by n steps of the Lanczos
algorithm is diagonalizable, then the residual vectors of the QMR algorithm
satisfy

lewll < x|l £(H,) VA + 1 et
where

(m) — i P
€= in max lp()|
where p is a polynomial of degree n, A(A) denotes the spectrum of A and w(-)
denotes the condition number with respect to the 2-norm.

Thus, if the spectrum of A is clustered around a few points, then the constant
e, which is a measure of how well the function zero can be approximated on
the spectrum of A, by polynomials of degree n normalized to one at zero, will be
small yielding a small error bound. In particular, if A is a rank p perturbation
of the identity, then A has at most P+ 1 distinct eigenvalues, so that QMR will
converge in at most p + 1 steps.
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3.2. Preconditioners obtained by altering the radiation boundary
condition. Since much of the difficulty in this problem stems from the radiation
condition, a fast preconditioner can result from simply replacing this condition
at parts of the boundary with a simpler one. This is due to the fact that standard
fast Poisson solver software such as the CBLKTR routine from the FISHPAK
library cannot handle the systems arising from the discretization of the problem
containing the radiation condition. Several variants of this idea are discussed
below.

3.2.1. Applying a Neumann Condition on two boundaries. Cyclic reduction
can still be used if the radiation boundary condition is retained along the sides
z = 0 and z = 1 but a Neumann condition replaces the radiation condition on
the other two sides. Using one-sided differences at the boundary, this yields the
preconditioner

(T-1) -I
-1 T -I

-1 T -I
-1 (T-1)

where T’ is the discretization matrix using one-sided differencing for the radiation
condition on the sides.

3.2.2. Applying a Dirichlet Condition on two boundaries. Another possibility
is to retain the radiation boundary condition along the sides z =0 and z = 1
but to impose a zero Dirichlet condition on the remaining two sides of the unit
square. The preconditioning matrix is obtained here by replacing the upper and
lower T blocks by T, thus yielding a matrix to which the classical cyclic reduction
technique using Chebyshev polynomials can be applied, i.e.

T I
-I T I
M,

-1 T -I
- T
3.3. Domain decomposition approaches. In the following approaches,
we separate the discrete domain into all or part of the boundary unknowns
and interior unknowns. This results in coupled subproblems that can be solved
separately in an efficient way using a fast solver for the interior and solving few
tridiagonal systems for the boundary. The coupling is reintroduced by iterating
for the solution of the complete problem.
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3.3.1. A line reordering. If the solution vector is partitioned into unknowns
corresponding to one line of the rectangular grid(i.e. points on the grid with the
same y-value), we obtain a block vector of the form

(Xo, [RR) axN+1)T7

where the xq and xy 1 blocks correspond to the first and last lines, respectively.
To separate interior from boundary points, the vector is permuted to
(xla ...y XN, X, xN+1)T

which transforms the coefficient matrix of the equation to

- -

T -1 ~I
-1 T -I
A= I T —I € C(N+2°x(N+2)*
-1 T —I
-I T
] -1 T
We write the reordered system as
[ x B C X by
1 A = ’ =
2 HEFNIHEN
where x = (x1,...,%n)7, ¥ = (x0,Xn+1)7 and b is partitioned accordingly

among by and by. The large N x N block B is the block tridiagonal matrix
obtained from discretizing the Helmholtz equation with zero Dirichlet boundary
conditions at y =0 and y = 1. The lower right 2 x 2 block D is small and block
diagonal, the diagonal blocks themselves being again tridiagonal, so it is easily
solved directly. Thus, if the two blocks C' and CT containing the couplings are
replaced by zero blocks, the resulting matrix g

B 0 ]

M3=[0 D

can be expected to yield a good preconditioner to A, whose application can be
performed with fast techniques. The rank difference between the preconditioner
and the original system is 4(N +2). Also, the preconditioned system turns out
to be two-cyclic, a property which we will take advantage of in Section 3.5 to
reduce the number of operations necessary in the iteration by half.

A third preconditioner is obtained with the help of the Schur complement of
(1). To this end, we form the equivalent system

(2) X B7(b, — Cy)
(3) (D-CTB™C)y = by-CTB b,
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by eliminating x from the second block equation in (1). This suggests the solution
approach of obtaining the right hand side of (2) by one fast solve, then using
iteration to solve (3) for y after which x is obtained from (2) with another fast
solve. Furthermore, for the iteration, (3) can be easily preconditioned with D.

The coefficient matrix (D — CTB~C) in system (3) is known as the Schur
complement of A and has dimension 2(N + 2) which is much smaller than the
(N + 2)? of the original system. However, an application of the fast solver
is still necessary at each iteration step in order to perform the matrix-vector
multiplication with the Schur complement. This can only be avoided by either
computing the Schur complement in its entirety prior to the iteration or by
finding a more efficient technique of applying the Schur complement to a vector.
The very simple structure of the two matrices C and CT multiplying B~ in (3)
gives some hope that this is possible. Indeed, if the matrix B! is partitioned
into N blocks of size (N +2) x (N +2) as

X1 -+ Xan
B 1= : : ,
Xn1 - Xwn
then (3) becomes
T 0 X1 Xin ]) T -1
4 - — ) ’ = b — C B b
@ ([ 0 T] [XN,I Xn.n y="m !

in which only the four blocks X1,1,X1,7, XN, and Xy n of B! appear. These
can be written as the first and last blocks of the solutions of the two matrix
equations

X1 I Xna 0

X2 0 : :

(5) . = . and B . =1 -
. : XN,N——I 0

Xl N 0 XN,N I

Since these matrix equations contain so many zero blocks, we might hope to
obtain the four matrices in question by some simple direct method. One approach
by which we could accomplish this is by explicitly computing the block LU
decomposition of B and using it to find an expression for the solution components
that we need. If we write B as

T -I I U, -1
-7 T L2 I

i

. . . Uy_, -1
I 7T LN I UN
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and compare corresponding blocks, we arrive at the following recursions

U, = T
Ly = —Ul_l, Us = T+ Ly
(©) :
Ly = -Uy,, Uv = T+Ly.
The matrices Uy and Ly can be written as
Ly = ~[pe-1(D)]™ pr—a(T) k=2,...,N
Ue = [ps—-1(D)] 7" p(T) =1,...,N

where the p; are the polynomials defined by the following initial conditions and
recurrence:

po(2) =1
(7) pi(z) = =z
Pr+1(2) = z2pr(z) — pr-1(2).

Using this representation of Uy and Ly, we can represent the solution of the
matrix equations (5) as follows:

(8) Xie = Pk——l(T—) Eﬁ__k pj—1(T) " 'p;(T)™!
Xng = pnv(T) 'pp_s(T)
for k=1,...,N. This gives
Xin = py(T)7?
Xvy = pn(T)7 py-1(T)
and somewhat more complicated expressions for X ~,1 and Xy ;. Since T' and
thus B are complex symmetric, however, we also obtain
Xin = Xna
Xy = Xi1.
The definition of the polynomials py, in (7) determine these to be the second

kind Chebyshev polynomials on the interval [1, 1}, of which the zeros are known.
In particular,

k
_ (*)
() =] (T — Al 1)
j=1
where )
A% = 9cos I,
J cos k+1

Thus, using a technique described in [11], multiplication of a vector by one of the
matrices X, 1 or Xy v can be performed by solving a sequence of N tridiagonal
systems. Thus, the Schur complement can be applied in O(N?) operations rather

than the O(N?log N) operations necessary to perform the fast solve to apply
B~1in (3).
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3.4. Another low-rank modification. Another preconditioner to the sys-
tem (1) is obtained by writing 4 as

[r-1 -1
-I T -I
A= I T -7 +UU7T
I (T-1)
T-1
| T-1 |
where

-I 0 - 0]I 0 2
T _ 2N+2)x (N+2)
v 0 - 0 —IIO I]EC '

Denoting A—-UUT as M3y, this yields a preconditioner that can be applied
using a fast solver with rank difference 4(IV + 2) to A. It can be interpreted as
introducing normal derivatives similarly to Section 3.2.1.

3.5. Using the ‘2-cyclic’ property. If we look again at the line-reordered
system from Section 3.3.1 preconditioned with Mz, we note that it has a special
structure, i.e.

~ I B-iC I B
1A= = .
My A=| pmigr ] [32 I ]

Matrices of this type are known as ‘weakly cyclic of index 2’ or to ‘possess
property A’ [12], which we will denote as ‘being 2-cyclic’ for short. For Krylov
subspace methods such as CG or QMR, this property can be exploited to save
roughly half the work necessary per iteration step. To see this, we look at the

recurrence relation for the right Lanczos vectors

Vpt1 = Av, — Ve — BrVa_1.

Assuming now that two pairs of consecutive left and right Lanczos vectors possess
a zero structure given by

(1) 0 (1) 0
= Va = = Wn =
V, = [ 0 jl s Vp—1 = ,: V7(L2_)1 } , Wp l: 0 yWp—1 szz_).l s

this results in

0
ap=1 and Vpy1={ (2 |,
v'n,-l—l

a corresponding relation holding for the n+ 1-st left Lanczos vector wy, 1. Thus,
in the matrix-vector and inner products occuring in the QMR iteration, this
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zero structure of the Lanczos vectors can be exploited to reduce the number of
arithmetic operations by one half. The only restriction is for the initial residual
r( to be of the form
*
g = [ 0 } )
(1)

which is easily achieved by choosing the upper block of the initial guéss x;
arbitrarily and setting the lower block to be

x(()2) =p® — Bzxgl),

where the right hand side b is again partitioned as
b®
b= [ b ] .
4. Numerical results

We have done numerical experiments to get an empirical impression of the
effectiveness of the preconditioners described in the preceding sections, whose de-
sign was based purely on heuristic considerations. In order to obtain a smooth
problem on which to test the algorithm, the forcing term in the Helmholtz equa-
tion was chosen to be f(z,y) = 1. The wave number % in the Helmholtz equa-
tion was chosen depending on the mesh size so as to produce 2 waves in the
unit square. In each case, the iteration was continued until the initial residual
had been reduced by a factor of 1078, The iterative method used here was the
QMR method due to Freund and Nachtigal. No look-ahead was performed, as
no breakdowns were ever observed in these problems.

In the following tables, the iteration counts as well as the execution times
in seconds for the preconditioned QMR iteration applied to our problem are
tabulated. The calculations were performed on an SGI 4D /35 workstation us-
ing double precision FORTRAN 77. The fast solves were all performed using
a variation of the CBLKTR routine from Swarztrauber and Sweet’s FISHPAK
collection available from netlib. In both tables, N denotes the number of mesh
points in each direction including the boundary points. The linear system solved
is thus of the size N? x N2. The preconditioners referred to in Table 1 are as
follows: preconditioner M; replaces the radiation condition with a zero Neu-
mann condition as in Section 3.2.1, preconditioner M» does the same with a
zero Dirichlet condition and preconditioner Mj is the line reordering described
in Section (3.3.1).

In Table 2, preconditioner 3a is the Schur complement preconditioned with
the matrix D from Section 3.3.1. Here, a fast solver is applied at every iteration
step to perform the multiplication with B~1. Preconditioner Mgy, is the precon-
ditioner described in 3.4 and MZ° denotes the the 2-cyclic iteration. Finally, M:{ °
denotes the iteration with the Schur complement using the fast application in-
volving the Chebyshev polynomisals to perform the matrix-vector multiplications
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N | unpreconditioned M, M, M3
10 | 15 (0) 6 (01) |6 (02 |11 (0)
20 | 40 (0.6) 7T (2 |8 (14) |13 (2)
30 | 63 (2.3) 7 (3) 8 (34) |15 (6)
40 | 84 (6) 7T (M |9 (83) |16 (13)
50 | 106 (11) 7 (11) |10 (15) |18 (25)
60 | 127 (19) 7 (15) |11 (24) [19 (38)
70 |148 (31) 7 (24) |10 (40) |20 (64)
80 | 170 (47 7 (33) |10 (54) [22 (89)
90 | 190 (67) 7 (40) |11 (72) |23 (120)
100 | 212 (92) 7 (83) |13 (94) |24 (165)
110 | 256 (134) 7 (64) [13 (114) |24 (201)
120 | 281 (175) 7 (80) |14 (153) |25 (261)
130 | 303 (222) 7 (118) 114 (219 |26 (407)
140 | 328 (286) 7 (138) | 17 (317) |27 (496)
150 | 350 (341) 7 (163) | 15 (348) |27 (592)
160 | 374 (427) 7 (199) |15 (414) |28 (710)
170 | 427 (549) 7 (235) 116 (493) |29 (873)
180 | 447 (645) T (272) |17 (602) | 29 (1088)
190 | 473 (736) 7 (306) [ 16 (646) | 30 (1181)
200 | 500 (864) 7 (368) {16 (787) |30 (1287)
210 | 491 (934) 8 (485) |17 (888) |31 (1557)
220 | 548 (1144) 7 (495) | 18 (1067) | 31 (1776)
230 | 574 (1310) 7 (523) |16 (1232) | 35 (2388)
240 | 599 (1490) 7 (585) |18 (1374) | 37 (1489)
250 | 621 (1676) 7 (626) | 18 (1499) | 37 (1895)
260 | 647 (2067) 7 (781) |18 (1881) |33 (3275)

TABLE 1. The unpreconditioned iteration and using precondi-

tioners My, My and M;

189
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N M3, Mz, Mie M]®

0|5 © |6 @© (11 (© [5 (0
2018 (@ |8 (@ |13 1O |8 @
30|18 (3 |8 (3 [15 (3 |8 (1
(10 (8 |9 (8 |16 (1 [10 (3)
50 {11 (16) |9 (13) |18 (13) |11 (5)

60 |13 (25) |10 (20) |19 (20) |13 (9)
70 |14 (44) |10 (33) |21 (36) |14 (13)
80 |14 (56) |10 (42) |24 (51) |14 (17)
90 |16 (83) |11 (60) |23 (64) |16 (24)
100 |17 (116) |11 (78) |24 (88) |17 (32)
110 |16 (132) |11 (96) |25 (112) {16 (37)
120 |18 (182) |11 (119) |25 (141) |18 (51)
130 |19 (292) |12 (195) |26 (216) |19 (67)
140 |20 (363) |12 (228) |27 (273) |20 (87)
150 | 20 (404) |12 (277) |27 (291) |20 (93)
160 | 21 (494) |11 (306) |28 (388) |21 (118)
170 | 22 (659) |13 (428) |29 (501) |22 (143)
180 |22 (773) |13 (471) |29 (556) |22 (164)
190 | 23 (893) |12 (494) |30 (556) |23 (193)
200 |24 (1031) |12 (601) |31 (682) |24 (220)
210 |24 (1374) {12 (699) |31 (946) |24 (268)
220 | 25 (1418) |12 (821) |31 (1086) | 25 (321)
230 | 25 (1721) |12 (960) |35 (1427) |25 (356)
240 | 26 (1381) | 12 (1033) | 37 (1445) | 26 (407)
250 | 26 (2081) | 12 (1124) | 37 (1826) | 26 (449)
260 | 27 (2576) | 12 (1418) | 33 (1675) | 27 (521)

TABLE 2. Preconditioned Schur complement, M3b, the 2-cyclic
iteration and the fast Schur complement
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as described in 3.3.1. This includes the fast solves for forming the right hand
side of the Schur complement as well as another fast solve after the iteration to
recover the values of the solution in the interior.

These results indicate that the most promising approach for obtaining mesh
independent iteration counts appears to be the operator oriented preconditioner
M;. However, even though the iteration count in this case was indeed constant
for all tested mesh sizes, the time for the whole calculation is reduced only to
about one third compared with the unpreconditioned iteration for the largest
problem. Preconditioner My performs similarly to the first but not quite as well.

The preconditioners based on domain decomposition-type reorderings such
as Preconditioner M3 and Mgy, even when the 2-cyclic property is exploited,
are not competitive with the former both with regard to overall execution time
as well as to how the iteration count increases with the number of unknowns.
Preconditioner Mgy, however, also appears to be mesh independent, having a
somewhat higher iteration count than M, which suggests that normal derivatives
seem to approximate this particular radiation boundary condition especially well.

The fast Schur complement iteration has the lowest overall execution time,
while the iteration count still increases strongly with decreasing mesh size. This
is also the case in which the domain decomposition idea is followed most conse-
quently, as the global fast solve in every iteration step is avoided.
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