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Spectral multidomain methods for the simulation of
wave propagation in heterogeneous media

E. FACCIOLI®™, A. QUARTERONI**), A. TAGLIANI(*)

ABSTRACT. Domain decomposition is used to approximate elastic wave propagation
in heterogeneous media. The spatial discretization is based on a Fourier-Legendre
collocation method stemming from a variational formulation of the problem at hand.
Time marching techniques are discussed, and some numerical tests are presented.

1. Introduction

The use of numerical simulation in engineering seismology is moti-
vated by the need of (a) evaluating the influence of the different factors
that affect earthquake ground motion at sites on the Earth surface, i.e.
source process, propagating medium, and near-surface geological irregu-
larities, and (b) assessing a priori the earthquake hazard at a given site
in the assumption that the foregoing factors are known. While numerical
simulation by itself cannot provide yet reliable estimates of the seismic
motion at a given site, mainly because of the lack of basic physical in-
formation, it remains possibly the only tool available to obtain physical
understanding of wave motion in the strongly heterogeneous media char-
acterizing the upper Earth crust and to interpret instrumental observa-
tions. The attention will be focused here on the modifications introduced
in upward propagating earthquake waves by the presence of surficial soil
deposits, i.e. alluvial valleys of different shapes, and of topographic ir-
regularities such as mountains and canyons.
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For viscoelastic behavior of the materials involved, the most efficient nu-
merical methods used in recent years to analyze such seismic site effects
include finite elements, wavenumber expansion extended to vertically in-
homogeneous media (Bard and Gariel, 1986), boundary integral equation
methods (Bouchon et al., 1989), and finite differences with irregular grids
(Moczo, 1989).

The use of the Fourier pseudospectral algorithm with explicit time-
marching, originally introduced in forward modeling analyses of explo-
ration geophysics which involve at most a flat Earth surface (e.g. Kosloff
et al., 1984), has been systematically explored and adapted for engineer-
ing seismology applications in 2D models with an irregular free surface
by Paolucci, 1989, Tagliani, 1989 and Faccioli, 1991. Numerical tests
have shown that the method is competitive with the previous ones as re-
gards computational efficiency. However, the presence of a non-periodic
boundary condition, i.e. the stress-free Earth surface, causes the loss of
the spectral accuracy of the method, and requires an ad hoc treatment
of the stress discontinuity.

Tllustrated in this paper is an alternative pseudospectral approach
for 2D problems in which Fourier collocation with regular grid spacing
is retained in the horizontal direction, while a Legendre collocation algo-
rithm is introduced in the vertical direction. The clustering of collocation
points at the extremes of the domain appears well suited for handling the
free surface boundary condition, while the ensuing severe restriction on
the time step size is alleviated by the domain decomposition, which also
provides a natural framework to account for different material parameters
in different regions of the model.

The performance of the method is illustrated by 1D tests on a lay-
ered halfspace with strong impedance contrast, and by a 2D model of
a semi-elliptical valley embedded in a homogeneous halfspace for which
analytical solutions are available.

2. Mathematical formulation of the problem
If we refer to the idealized situation depicted in Fig.1, the one-dimensional
elastic wave equation can be formulated as
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Fig. 1 -One-dimensional domain partition
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where u is the horizontal displacement, and 8 = (z) is a given function
(the velocity of propagation). Equation (2.1) needs to be supplemented
by two initial conditions, say u(z,t = 0) = p(z) and 2%(z,¢ = 0) = 9(2),
along with two boundary conditions. The one at z = 0 (the free surface)
frequently takes the form of a zero stress, i.e.

ou
2.2 — =0at z=0, t>0.
(22) =0t 2=0, >
For what concerns the lower boundary, a convenient approach is to en-
force the radiation condition
du 10u

. —_— = = >
(2.3) 92 =~ B ot at z=L, t>0

A two-dimensional model is easily derived considering the domain ) =
{(z,2) : =M <z < M, 0 < z < L}, and assuming M large enough in
order for u to be considered periodic at x = —M and x = M. In such a
case, the model equation becomes

9 0u 20U

(2.4) )+'—-(ﬁ 72), 0<2< L, -M <z <M, ¢ >0

0
at2 =552
For the sake of simplicity, let us illustrate our multidomain formulation
on the one-dimensional problem (2.1). To start with, we split the vertical
interval I = (0, L) into Iy UI,, where I; = (0,4] and I = [, L), for some
~v: 0 < < L. Then for each ¢ € (0,T), we look for u;(t), s = 1,2 (the
notation u; = u |z, is understood)

(2.5) ur(t) = ug(t) at 2=+

2
2=1 i

for any test-function v belonging to the space
H*0,L) = {v € L?(0,L) : eL’~’(0 L)}

The rationale behind (2.5) is as follows: counterintegrating by parts on
the right-hand side and playing suitably with the test functions v we find
out that each u; individually satisfies (2.1) in I;. Besides, u; satisfies
(2.2) and uy verifies (2.3). Further, since the test functions are continous
across z = v we deduce from (2.6) that

ou (t) 811,2 (t)
2 YY1 _ 12 a —
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i.e., stresses are preserved across the interface point z = ~ (note that
may be different approaching z = « from different sides).

The extension to the two-dimensional case is straightforward pro-
vided we decompose ) into Q; = 1 X {~M < z < M} and Qy =
I, x {—M < z < M}. Denoting this time with u; the restriction of u to
Q;, % =1,2, instead of (2.6) we have

2 2
0%u;(t) _ 0 0u;(t) v
(2.8) ; /Q T vdzdz = —; /Q ,- P — = o dwdz+

M By ()
M Ot

for all ¢ > 0 and v € H} (), where

+ U |p=r dz

H(Q) = {v e L*(Q) : Vv € L*(Q), v is periodic at = £M}.

In particular this still yields fulfillement of (2.4) upon Q; and Qs,
of the boundary conditions at z = 0 and z = L, along with the stress
continuity equation (2.7) that holds now across the whole interface I' =
{-M<z< M, z=n}.

The generalization to decomposition by more than two subdomains
is also straightforward.

3. Spectral approximation by the Legendre collocation method

Let I=(-1,1) denote a reference interval, N a positive integer (the
polynomial degree), and Z;, 0 < j < N, the roots of (1 — 22)Liy(2), Ln
being the Legendre polynomial of degree N. We order Z; from left to
right in a way that Zo = —1, Zx = 1; the other points are simmetrically
distributed around z = 0. Let @; denote the weights associated with Z;
in the Gauss-Lobatto formula. We remind that

N 1
(3.1) > elz)ws = [ plas
3=0 -1

for all ¢ € IPyy_; (hereby, IP, denotes the vector space of algebraic
polynomials of degree < n). For details see Davis and Rabinowitz, 1985
or Canuto et al., 1988.

(%)

The we map Z; into z;’ according to the transformation I — I;,

1=1,2 and set wj(-i) = wj(meas(I;)/2). Moreover we define

N
(3.2) (0,00 = Y ez, i=1,2
5=0
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and
Vv ={p€C°l0,L]: p|r,€ Py, i=1,2}.

The spectral approximation to the multidomain problem (2.5), (2.6) is
defined as follows. )
For each £ > 0 we look for u%) € Py, 1=1,2, such that

(3.3) W) =u@@) at z=1
3. 4)
2, (%) (%) (2)
Z(B 'l:év ,’UN)N _ E(ﬂzau (t) avN)N ﬁa’u,N (t)'UN |z=L
i=1

for all test functions vy € V.
A differential interpretation can be provided owing to the property
of exactness (3.1), which in turns implies:

(35) (00 = [ vz if b€ Pay-s

As a matter of fact, using a standard technique from (3.4) we obtain
S 2,,(8) @

66 LPud)= T D2y

at 20, 1<j<N-1, i=12

For any function p € C°(I;), Ji,© € Py denotes the polynomial inter-
polating © at the Legendre points zj( ), j =0,....,N. For each 7, (3.6)
is obtained counterintegrating by parts in (3. 4) and taking as vy the
Lagrangian polynomial 1/)(1) (2) such that 1/1(”( z.)) =6k for 0< k< N.
The boundary condltlons stemming from (3 4) are obtained smnlarly,

setting now vy = ¢ or vy = ](v), and taking the following "wea
form:

1)
(3.7) a“gz(t) = - LPuP @) at z=0,

2
0u( )1 6u§v)

2) 7 (2), (2
9. 7§ ot =w](V)L§V)u§V)(t) at z=L.

(3.8)

Since both w((,l) and Wz(\?) behave like 1/N? as N goes to infinity, it follows
that (3.7) and (3.8) are the "relaxed” form of (2.2) and (2.3), respectively.
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Similarly, from (3.4) we can obtain the following interface transmission
relationship

duf () L, 0ud(t
CORNEC AU L e O 2 IO Tl

Collecting (3.3) and (3.6)-(3.9), the problem is now closed, and provides
a system of differential algebraic equations that should be discretized in
time. At this stage, at least three different approaches can be pursued.

The first one is based on a fully explicit, second order leap-frog’
scheme. The results that are presented in the next section are obtained
by this method.

A second approach entails advancing by a fully implicit Newmark
method.

A latter possibility consists of advancing the differential equation
(3.4) by the explicit leap-frog scheme at the interface solely. This would

provide the updated value of u%) at z = < to be used as boundary data
for either I; and I, where the Newmark method can therefore be ap-
plied yielding two completely independent subproblems. This approach
is based on an idea of Dawson and Dupont.

4. Numerical results
In our calculation, the time derivative in (2.1) and (2.4) is discretized
by an explicit second order leap-frog scheme, taking as time-step At =
min;(At;) where each At; is obtained through a Von Neumann analysis,
and reads

L; 1
(4.1) At; = 2\/§m Nz

Here L;= length of the i-th subdomain, while N;= degree of the spectral
solution in the i-th subdomain.

Because of (4.1) the number of discretization nodes should be kept small,
and this condition can be satisfied by the multidomain technique.

4.1 1-D analysis. We first consider a model consisting of two paral-
lel layers I; and I (whose depth is 320 m), with velocity ratio % =

7 (1=3000 m/s), 33 nodes of discretization in each subdomain and
At=0.0002 sec, with boundary conditions illustrated in Fig. 2a. The
upper boundary is assumed to be stress-free, to represent the Earth sur-
face. Excitation is taken as a double impulse of assigned bandwith im-
pinging at the base. The synthetic seismogram calculated at the surface
is illustrated in Fig. 2b. In Fig. 2c the spectral ratio (Fourier spectrum
of surface response/ input spectrum) for the computed seismogram is
compared with the exact solution available for this simple model.
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Fig. 2c¢ -Spectral ratio for the computed seismogram

4.2 2-D analysis. A 2-D analysis was also performed, limited to two
subdomains. The model is illustrated in Fig. 3a and represents an ellip-
tical alluvial valley with 1:2 axis ratio, completely contained within the
layer ;. The ratio of the propagation velocity in alluvium, 8, (3000
m/s) to that of the surrounding material, B3, is 1/2. Each subdomain is
vertically discretized with 20 nodes, while a constant Az=20 m is used in
the horizontal direction, and At=0.0002 sec. The excitation consists of
a Ricker wavelet, with f,=7.5 Hz, vertically impinging at the base of the
model. The synthetic seismograms obtained at evenly spaced receivers on
the surface are illustrated in Fig. 3b. A comparison between the surface
spectral ratios calculated from synthetic seismograms at a frequency of
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8.4 Hz and those obtained by a closed form solution (Wong et al., 1974)
is shown in Fig. 3c. The small observed discrepancies in the spectral
ratios are mainly due to the coarse grid used in the horizontal direction.
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Fig.3c -Spectral ratio for the computed seismograms

5. Conclusions

The proposed method appears to provide accurate numerical so-
lutions to 1D and 2D wave propagation problems encountered in the
analysis of seismic site effects. The multidomain description allows an
effective reduction of the number of vertical discretization points, and
thus alleviate the heavy restriction on the time step size imposed by the
explicit integration scheme and by the clustering of points near to the
boundary. However, further work appears desirable to clarify the choice
of the subdomains and of the number of discretization points when more
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complex heterogeneities are present.
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