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The Dual Schur Complement Method
With Well-Posed Local Neumann Problems

CHARBEL FARHAT
FRANCOIS-XAVIER ROUX

ABSTRACT. The Dual Schur Complement (DSC) Domain Decomposition
(DD) method introduced by Farhat and Roux is an efficient and practical
algorithm for the parallel solution of self-adjoint elliptic partial differential
equations. A given spatial domain is partitioned into disconnected subdo-
mains where an incomplete solution for the primary field is first evaluated
using a direct method. Next, intersubdomain field continuity is enforced
via a combination of discrete, polynomial, and/or piece-wise polynomial
Lagrange multipliers, applied at the subdomain interfaces. This leads to a
smaller size symmetric dual problem where the unknowns are the “gluing”
Lagrange multipliers, and which is best solved with a preconditioned con-
jugate gradient (PCG) algorithm. However for time independent elasticity
problems, every floating subdomain is associated with a singular stiffness
matrix, so that the dual interface operator is in general indefinite. Previ-
ously, we have dealt with this issue by filtering out at each iteration of the
PCG algorithm the contributions of the local null spaces. We have shown
that for a small number of subdomains, say less than 32, this approach
is computationally feasible. Unfortunately, the filtering phase couples the
subdomain computations, increases the numerical complexity of the over-
all solution algorithm and limits its parallel implementation scalability,
and therefore is inappropriate for a large number of subdomains. In this
paper, we regularize the DSC method with a perturbed Lagrangian for-
mulation which restores the positiveness of the dual interface operator,
reduces the computational complexity of the overall methodology, and
improves its parallel implementation scalability. This regularization pro-
cedure corresponds to a novel splitting method of the interface operator
which entails well posed local discrete Neumann problems, even in the
presence of floating subdomains. Therefore, it can be also interesting for
other DD algorithms such as those considered by Bjordstad and Widlund,
Marini and Quarteroni, De Roeck and Le Tallec, and recently by Mandel.
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1. Introduction.

Recently, Farhat and Roux have introduced a Dual Schur Complement
(DSC) Domain Decomposition (DD) method for the efficient solution of static
[1-4] and transient [5] finite element structural problems on parallel processors.
The method was shown to outperform direct solvers on both serial and coarse-
grained multiprocessors such as the CRAY Y-MP system, and to compare favor-
ably with other domain decomposition algorithms on a 32 processor hypercube
[2]. However, for large number of subdomains and processors and for time in-
dependent problems, the DSC method may lose some of its efficiency because
of its special treatment of floating subdomains. The objective of this paper is
to present a regularization procedure that is based on a “balanced” perturbed
Lagrangian formulation and which improves the overall computational efficiency
of the DSC method. This regularization procedure corresponds to a novel split-
ting method of the interface operator which entails well posed local discrete
Neumann problems, even in the presence of floating subdomains. It provides a
practical mean to regularize several other DD algorithms using both Dirichlet
and Neumann local solvers and which can suffer from the presence of floating
subdomains [6, 7, 8, 9].

The resulting Regularized Dual Schur Complement (RDSC) method is
a two-field alternative to the related three-field hybrid domain decomposition
method introduced by Glowinski and Le Tallec [10]. Because of space limita-
tions, we refer the reader to [2-3] for a background on the DSC method and for
a discussion on the effect of floating subdomains on the algebraic properties and
computational requirements of the resulting interface problem.

2. A regularized DSC method
. 2.1. The two-subdomain problem. The variational form of the three-
dimensional boundary-value problem to be solved is as follows. Given f and

h, ﬁn.d the displacement function % which is a stationary point of the energy
functional:

1) )
J(v) = Ea(va 'U) - ('Uv .f) - ('U, h’)l"

where
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Q ) Th

In the above, the indices i, j, k take the value 1 to 3, V(i,5) = (vi,j +v;,:)/2 and
v;,j denotes the partial derivative of the i — th component of v with respect to
the j —th spatial variable, ¢;jk1 are the elastic coefficients, ) denotes the volume
of the elastostatic body, T' its piecewise smooth boundary, and T';, the piece of
I’ where the tractions h; are prescribed. If Q is subdivided into two subdomains
13 and Qs, solving the above elastostatic problem is equivalent to finding the
displacement functions w1 and u2 which are stationary points of the perturbed
Lagrangian functional:
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H(vi,v2,A) = Ji(vi) + Jo(v2) +/ Alvy —v2) dT
r'r

1

(2)
- 5/ L(vilg,)* = L(vzlg,)? dT
T;

where I'y C I'; is a subset of the interface boundary, and £ is a linear operator
that acts on the traces of v; and w2 on T';. The proper selection of Ty and
L is discussed later. In the remainder of this section, we assume that only
Qs is a floating subdomain — that is, a subdomain without sufficient Dirichlet
boundary conditions to guarantee a non smgular stiffness matr1x The finite
element equations associated with (2) are given by:

(3) (Ki—A)uy =f1 —BTx; (Ke+A)uz =f2—BJx; Biui+Baus =0

where K; is positive definite, K3 is positive semi-definite, and A is zero ev-
erywhere except on a subset of the interface boundary degrees of freedom. If
discrete Lagrange multipliers are used, B1 and B are signed booclean matri-
ces: otherwise, they are standard finite element matrices with full column rank.
Clearly, A serves the purpose of regularizing Ko. However, A is useful only if
it is sparse and computationally inexpensive, and if it restores the positive defi-
niteness nature of the stiffness in (2, without destroying this algebraic property
in Q1. In other words, the problem now is to find an economical matrix A —
or its corresponding operator £ — which can stiffen Q3 enough so that Ko + A
is symmetric positive definite, without softening Q1 enough so that K; — A is
singular or indefinite. We refer to this problem as a balancing problem, and
we refer to the corresponding functional H(v1,v2,A) as a balanced perturbed
Lagrangian.

REMARK 2.1.1. Given that f-fl L(v1 (FI)Q - L(v2|ﬂ)2 dI’ depends only on the

traces of v; and w2 on the subset I'; of the interface boundary I'; where the
Lagrange multipliers A enforce the continuity equation (v1 — v2)lr, = 0, the
solution (u1, uz) of the system of Eqs. (3) is independent of the operator £ and
its corresponding matrix A.

2.2. Balancing the subdomains. Here we consider the Qroblex‘n'of
constructing A such that both K; — A and K3 + A are symmetric positive
definite.

Let n; and n, denote respectively the total number of unknowns on Iy,
and the exact number of rigid body modes associated with Q23 — that is, the
dimension of the null space of K. These rigid body modes can be eliminated,
for example, by fixing n. degrees of freedom on I'y, where nr < nc < ny. We
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define Ty as the spatial support of these n. degrees of freedom (FIG. 1).

Yyl

NN N NN

-O‘4 0,

FIG. 1. T for the two-subdomain problem with a local singularity
Next, we partition the subdomain stiffness matrices as:

Kff fe If fe
(4) Kl = fl T Kl and K2 = K2 T K2
ch Kfc Kgc Kgc

where the superscript ¢ denotes those degrees of freedom on I'7, and the super-
script f denotes all of the other degrees of freedom. The above partitioning is
characterized by:

1. K{ f and K£ ¥ are symmetric positive definite,
2. K{ ¢ and Kg ¢ have full column rank,

T -1

3. K§ - K{ ¢ K{ s K{ € is symmetric positive definite, and:
T -1

4. Kg§ - K{ ¢ Kg f Kg ¢ is symmetric positive semi-definite.

After all but the last n. equations in each subdomain are reduced with a Gaus-
sian elimination or a Choleski decomposition, K; and K5 are overwritten with:

fiE fc®
K{% = [Kl K:}‘ -1 :|
5) K¢ - K¢ KIf T kie
R R
kP - | K3 KJ°
2 Kee - KfCTKff_leC
2 2 B3 2

where the superscript £ indicates a reduced matrix. Now, if A is constructed
as:

* 1 T -
(6) A =ar = ke -k KK
then it follows that:
(7 a
R
A o

T —
rxge —xf kI T kiR
(kg + A%)E I:K%’fﬂ KgcR
2 = T —1 T -
s — 1 sef 7 xef 4 Joxce - ] kT R
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which clearly demonstrates that both of K; — A* and Ko + A* are symmetric
positive definite matrices.

The extreme values of n. correspond to two extreme regularization strate-
gies. For nc = nj, the local problems are better conditioned than for n. = n,,
but a lot of fill-in may be introduced during the factorization of Ko + A*. On
the other hand, for n, = nr, the local problems are not as well conditioned as for
ne = ny, but K + A* and Kz have in general the same sparsity pattern, and
therefore the latter regularization strategy is cheaper to implement. The case
nr < ne < ny corresponds to a compromise between the two extreme options.
In the remainder of this paper, we consider only the case where n. = n,, and
therefore we have:

(8) K -K{ K TKE = 0

2.3. The multiple subdomain problem. For the sake of clarity, we
first consider a strip-wise decomposed three-subdomain problem where 2 is

clamped at one end, and Q2 and Q3 are floating subdomains (FIG. 2). f(Il’z)

is defined as the spatial support of n&l’” degrees of freedom on the interface
between (11 and Q2 that must be constrained in order to remove the rigid body

modes in Q2. Similarly, —fgz,s) is defined as the spatial support of n$2’3) degrees
of freedom on the interface between 25 and (13 which must be constrained in
order to eliminate the rigid body modes in Q3, after Q2 has been regularized.
=(1,2 L
For subdomain 2, we refer to the degrees of freedom on 1“5. ) as the receiving

degrees of freedom, and to those on f§2,3) as the emitting degrees of freedom.

= {23)
e
B
{2, Q, L2,

FIG. 2. The strip-wise decomposed three-subdomain problem
with local singularities
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We partition the subdomain stiffness matrices as:

K/f ki Kif Ki°

Ki = flcT ]r;c Ks = £ ce

L CRE S K3~ Kj
© Kk K
a,nd K2 — Kgcr Kgrcr Kgrce
Kgce'r KgrceT ngce

where the superscript ¢ and ¢ indicate the receiving and emitting degrees of

freedom in Qg, respectively. After all but the last n£1’2) equations in €1 and Qg,
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and all but the last n,(nz’g') equations in Q3 are reduced, the subdomain stiffness
maftrices are overwritten with:

(10)
FrE fef R R
kP = [%1 K ] Ky = [Kg‘f K[ ]
fer o ff g fe
K -KJ° KT K/
and
Kng Kgc'r'R . KgceR
R _ r.r T -1 T r e rT -1 e
R I i o W i s
T € c’f’ - e T e e € - €
i L s
First, (3 is regularized with the n&l’z) X ngl,z) matrix A(L2) = —;—(Kfc -

K< KT KS) after whi ; i
1 4 1) after which the factored stiffnesses in 21 and Qs become:

R R
(11) K- Aty - | KT K]
A(112)R

and

(kg + ALDHE

Kng Kfc'rR KgceR
T rT -1 td rT -1 e
[Kg ¢ _Kgc Kgf Kgc +A(1’2)]R [Kg"ce _Kgc K{f K;c ]R
AN Ty
where

e e eT -1 e e rT -1 [
Ty = K§ © —xi¢ wff kf kg _ ki kI gl
(12) . 2 2 2 2 2 2 2 ]

7 rT —1 r T e r - e
K < -k &I KL 4 AT kg ST kT kS

Next, Q3 is regularized with the~nq(n2’3) X n$2’3) matrix A(2:3) = %Tz and finally
the factored stiffnesses in Qs and Q3 become:

(13)
(k2 - AGE =
K{fﬁ Kfch KfceR
[Kgrcr _ KgchKgf—-lKgcr + A(1'2)]R [Kgrce _ KgchKgf—lKgcelR
A(233)R

and

R R
(14) (ks + ACR — | KT K]
AR
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For arbitrary mesh decompositions, the crucial point is to detect for a

given subdomain Qs and a neighboring €4, whether f&s"” is a “receiving” or
“emitting” subset of I';. If V; denote the number of neighboring subdomains to
s, the overall regularization algorithm can be implemented as follows:

Step 1. For every subdomain €, reduce all but the last n,(f‘) equations of
the corresponding stiffness matrix Ks. (Note that for the minimal

strategy nss) < 3x Vs in two-dimensional problems, and n,(ns) <6xVs
in three-dimensional ones.)

Step 2.  Regularization proceeds from the non-floating subdomains towards
the floating ones. Floating subdomains which contain both “receiv-
ing” and “emitting” interface subsets are regularized first, and the
“receiving” degrees of freedom are treated before the “emitting” ones.

Clearly Step 1 is a parallel step but Step 2 is a sequential one. However, for
most large-scale problems, the CPU time corresponding to Step 2is an extremely
small fraction of the CPU time corresponding to Step 1, as the first step may
involve millions of floating-point operations while the second one involves at
most a few hundreds. Interprocessor communication is required only in Step 2
and is limited to neighboring processors.

3. The regularized interface problem.
If the floating subdomains are not regularized, the interface problem associated
with Egs. (3) can be written in the case of N, arbitrary subdomains as [1]:

(15)

s=Ng

D BkiBT -Gy | [a] _ [d

s=1 al — |—e

-G;T o)
where

K: = k;! if Q; is not a floating subdomain
K} = k! if Q; is a floating subdomain

where K7 is a generalized inverse of K;, Gy is a full column rank matrix that
stores the traces on the interface boundary of the null spaces corresponding to
the floating subdomains, and o stores the contributions of these null spaces to
the local solutions. The above interface problem (15) is clearly indefinite and
its solution requires special handling [1-3]. On the other hand, the regularized
interface problem associated with Egs. (3) can be written for Ng arbitrary
subdomains as:

s=Ng s=N;
(16) [Z B, (Ks + 86:A.) BT = Ba(Ks + 6sA4) s
s=1 s=1

where 85 is +1,-1, or 0 if {25 is a receiving, sending, or non floating subdorr}a.in,
respectively. Clearly, the above regularized system (16) is symmetric positive
definite. The PCG algorithm can be applied to the solution of (16) at I}ttl'e ad-
ditional cost and using only subdomain-by-subdomain scalable and intrinsically
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parallel computations. As in the case of non floating subdomains, the above
interface problem is preconditioned with P derived in [1] as:

8=Ng
av) P! = Y BB
s=1

4. Performance improvement.
Here, we consider the static analysis of the cabin of a launch vehicle subjected
to external aerodynamic loading and internal pressurization (FIG. 3). All com-
putations are performed on an iPSC/860 Touchstone machine. The structure is
discretized with triangular shell elements. Several meshes of different sizes are
constructed, each corresponding to a different number of processors and there-
fore to a different total memory size. In order to highlight the improvement
in performance induced by the regularization approach described in this paper,
both the “filtered” DSC method [1] and the RDSC method are applied to the
solution of the same problem. Also, the Jacobi Preconditioned (diagonal scaling)
Conjugate Gradient (JPCG) algorithm is used as a reference for CPU timings.

FIG. 3. Finite element discretization of the cabin

All measured performance results are summarized in TABLE 1 where NP,
NDOF, and Tp denote respectively the number of processors, the number of
degrees of freedom, and the solution parallel time measured in seconds. The
number of iterations is indicated in between parenthesis. For all solution algo-
rithms, convergence is established by requiring that the relative global residual
be less than 10~3:

Ku-—f
|I£]]2
TABLE 1
Performance results - iPSC/860
NP NDOF T, (JPCG) T, (DSC) T, (RDSC)
4 4,024 46 s. (700 it.) 23 s. (34 it.) 22 s. (38 it.)
18 16,456 110 s. (2308 it.) 54 s. (66 it.) 49 s. (62 it.) "
32 31,028 168 s. (3980 it.) 79 s. (89 it.) 62 s. (92 it.)

64 59,064 295 s. (6127 it.) 189 s. (142 it.) 121 s. (144 it.)
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The performance results reported above clearly indicate that:

1. the regularization process does not seem to negatively affect the perfor-
mance of the solution of the interface problem as the DSC and RDSC
method appear to converge after an almost identical number of iterations,

2.  as expected, the performance improvement due to regularization is most
important for an increasing number of processors,

3. both DSC methods are shown to outperform the JPCG algorithm by a
factor of three.
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