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Parallel Domain Decompositon for
Incompressible Fluid Dynamics

PAUL ¥. FISCHER

ABSTRACT. We consider the implementation of a domain decomposition
scheme for spectral element solution of the Navier-Stokes equations in three-
dimensional domains. Calculations performed on the 512 node Intel Delta
machine illustrate the effectiveness of improved strategies for the coarse grid
solve, subdomain edge update, and local block-preconditioner when solving
large problems. In addition, a projection technique is presented which
significantly reduces the number of iterations for solution of the elliptic
sub-problems arising from this class of time-dependent problems.

1. Introduction

Domain decomposition provides a mechanism for parallel solution of PDE’s by
establishing a two-level data hierarchy naturally suited to distributed memory
architectures. In the context of iterative solution of linear systems, domain
decomposition also provides a framework for the development of efficient multi-
level methods based upon the combined use of local and global solvers which
effect rapid information transfer at their respective scales. In this paper. we
discuss several key components for a domain decomposition approach to solution
of the incompressible Navier-Stokes equations on large scale multi-computers.
The scheme is based upon the spectral element method [1,2] coupled with the
domain decomposition based pressure iteration introduced by Ronquist [3.4].
Calculations have been performed on the Intel Delta machine at Caltech. which
is a mesh-connected multiprocessor employing 512 Intel i860 microprocessors.

Our current development work has focussed upon the particular baseline prob-
lem shown in Fig. 1, which is the case of a flat plate boundary layer interact-
ing with a hemispherical roughness element. The discretization consists of 512
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FIGURE 1. Computed interaction of a flat plate boundary layer
with a hemispherical roughness element at Re = 500. K = 512,
N =09.

spectral elements of order 9. The hemisphere of radius R = 1 is centered at
z = (0,0,0). A Blasius profile with 699 = 1.15 and U, = 1 is specified for
the z-component of velocity both as an initial condition and inlet profile at
r = —8.4. Symmetry boundary conditions are specified at y = 0, y = —6.4, and
z = 6.5, and Neumann outflow boundary conditions are imposed at r = 25.6.
Fig. 1 shows contours of spanwise vorticity in the symmetry plane (y = 0)
along with isosurfaces of axial vorticity in the foreground for a Reynolds number
of Re = R—gm = 500. The hairpin vortices downstream of the hemisphere are
observed experimentally [5].

The hemisphere problem of Fig. 1 is of moderate size; when running on all 512
nodes on the Delta, the distribution of one spectral element per processor yields
fewer than 1000 points per processor. At this relatively fine granularity, parallel
overhead can be significant. In this paper we address two sources of overhead
generic to many domain decomposition solvers - the communication required
for the residual update of grid points residing on the “wire-frame” comprised
of subdomain edges and vertices, and the coarse-grid solve, which is typically
not amenable to parallelism because of the few degrees-of-freedom involved. In
addition, we present improvements to the local preconditioner, and a projection
technique which improves the initial guess for the pressure solver, resulting in a
significant reduction in pressure iterations.

2. Domain Decomposition

In order to underscore the key components of our Navier-Stokes solver, we
briefly review the spectral element discretization and domain decomposition
based solvers introduced in [3].
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The spectral element method is based upon a decomposition of the computa-
tional domain into K hexahedral elements which are locally mapped to [~1,1]¢
in R9. Within each element, the geometry, solution, and data are expanded in
terms of high-order tensor-product Lagrangian bases in each coordinate direc-
tion. Variational projection operators are used to discretize the elliptic PDE’s
arising from time split treatment of the Navier-Stokes equations, and a consistent
variational formulation is used for the pressure/divergence treatment. The ve-
locity is represented by Nth-order polynomials on the Gauss-Lobatto-Legendre
quadrature points, &; € [-1,1], = 0,..., N, in each coordinate direction, with
CP continuity enforced at element interfaces. The pressure is represented by
polynomials of degree N — 2 based upon the Gauss-Legendre quadrature points,
n; € — 1,1, 7 = 1,..,N — 1, in each coordinate direction, with continuity
and boundary conditions imposed only through the divergence-free constraint in
the Stokes operator. Further details of spectral element discretizations for the
Navier-Stokes equations may be found in [2].

Temporal discretization is based upon an operator splitting in which the non-
linear convective terms are treated explicitly via a characteristic/sub-cycling
scheme, and the viscous and divergence operators are treated implicitly. Spatial
discretization of the resultant unsteady Stokes problem leads to the following
linear system to be solved at each time step:

(1) Hu,-Dfp = Bf, i=l..d ,
Diu, = 0

Here, H is the discrete equivalent of the Helmholtz operator, { —5&-V? + a:};
B is the mass matrix associated with the velocity mesh; D = (D;,...,D,) is
the discrete gradient operator; and underscore refers to basis coefficients. The
solution of (2.1) is simplified by a Stokes operator splitting which decouples
the viscous and pressure/divergence constraint [6]. This splitting leads to the
solution of a standard Helmholtz equation for each velocity component, while
the resulting system for the pressure is similar to (2.1) save that H is replaced
by ﬁ B. The resulting system can be efficiently treated by formally carrying out
block Gaussian elimination (Uzawa decoupling) for p, leading to:

(2.2) Ep = g,
where
d
(2.3) E=-Y D,B'D,
i=1

and g is the inhomogeneity resulting from the time-split treatment of (2.1). The
adva;lta,ge of the Stokes splitting is that no system solves are required when

applying E, as B is diagonal.
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E corresponds to a consistent Poisson operator for the pressure and, though
symmetric-positive definite, is less well conditioned than the Helmholtz prob-
lems for the velocity components. Consequently, solution of (2.2) dominates
the Navier-Stokes solution time. An effective multi-level iterative solver for this
problem was developed by Rgnquist [3] in which the pressure is split into two
components, p, € RX . which is a vector containing the average pressure within
each element, and p, - which accounts for the local pressure fluctuation within
each element. With this decomposition, equation (2.2) becomes:

(2.4) E(Ip, + py) = 9,

where I is a local operator that maps a constant onto each node within a given
element. Using the transpose operator, IT, which takes the local average of
values within an element, we define the following operators:

(2.5) E, = I'EI,
(2.6) Ey = E-EIE]'I'E,

which can be used to recast (2.4) as:

(2.7) Ep, = I'g - I"Ep,,

Once p N 18 known, p, can be readily computed, as Ej is a relatively small K x K
system which can be computed explicitly and factored in a preprocessing step.
E is a much larger system which is solved by preconditioned conjugate gradient
iteration, necessitating repeated global solves in E, due to (2.6).

As noted in [3], the advantages of the decomposition of (2.2) into (2.7-2.8) are:
(i) low-wavenumber components in p, are effectively eliminated in (2.8) by the
presence of By ! making the required number of iterations to reach a specified
tolerance relatively insensitive to the number of elements, and (ii) the system
(2.8) is sufficiently decoupled such that an effective block preconditioner, E N
can be developed by using the local E-matrices corresponding to imposing homo-
geneous Dirichlet velocity boundary conditions on all the external and internal
elemental (or subdomain) interfaces. As a result of the decoupling, the precon-
ditioning step can be performed using direct solvers and is readily parallelized
as it involves no communication.

In summary, the basic elements of the two-level pressure iteration are:

e Forward Operator Application - E

e Coarse Grid Solve - Ej*

e Local Preconditioner Solve -E;
In the following sections, we present approaches to each of these components
which are appropriate for three-dimensional domain decomposition implementa-
tions on a large number of processors.
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2.1. Operator Evaluation/Communication. Our parallel implementa-
tion follows standard domain decomposition/distributed memory multicomputer
programming paradigms in which K elements are distributed amongst P proces-
sors, iteration and time advancement proceeds in a loosely synchronous manner,
and interprocessor communication serves to synchronize the computation [7,8].
Vector reductions (e.g., inner-products) are performed in O(log, P) communi-
cation cycles and face-face exchanges are employed to invoke direct stiffness
summation. '

Spectral element operator evaluation proceeds in two stages. Locally, deriva-
tive operators are applied in a tensor product fashion, leading to an operation
count for each element of O(N*1) in d space dimensions. The evaluation can be
expressed as a matrix-matrix product, which is an extremely fast operation on
most vector and RISC architectures. Inter-element continuity is applied via di-
rect stiffness summation in which intermediate residual values corresponding to
gridpoints shared by two or more elements are summed. Because it is non-local,
direct stiffness summation requires interprocessor communication.

Direct stiffness summation is organized into two distinct phases. The first in-
volves a face-face exchange and sum of data between adjacent pairs of elements.
Edges and vertices shared by more than two elements may require communica-
tion amongst more than just two processors. However, if the elements are arrayed
in a tensor-product structure, it is possible to update all vertices and edges cor-
rectly by organizing the face-face exchange into a d-directional exchange and
sum sequence [7]. For irregular element configurations, it is not always possible
to find such a sequence. Thus, the second phase of the direct stiffness summation
is to employ a global combine operation to update the remaining Nopec “special”
nodes not correctly updated in the first phase.

Our original implementation of the special node combine operation proceeded
by replicating a vector of length Nopec 01 each processor which was initialized
to zero.” Residuals at each special node were added to the appropriate location
in the vector, which was then summed via a global combine operation requiring
O(Nspec log, P) communication. This approach is easy to code, and very effective
when N, and log, P are small.

On currently available parallel supercomputers, we face the situation where
we can solve very large problems, implying that Njspee and log, P are no longer
small. We have therefore adopted a generalized combine operation based on the
static crystal router concept of Fox, et. al. [8]. The procedure recursively sub-
divides groups of processors into two new subgroups, and at each stage copies
(with summation) data from one subgroup to the other for vertices represented
in both subgroups. The procedure requires establishing a destination table for
intermediate traffic through each processor, but does result in significant reduc-
tion in the overall amount of data traffic for large three-dimensional problems.
For example, in the baseline problem of Fig. 1, the total number of points on the
“wire-frame” comprised of edges and vertices is roughly 15000, out of 375,000
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total. The use of the organized face-face exchange reduces the number of points
requiring special treatment t0 NMypee = 2000. Finally, use of the crystal-router
based summation scheme results in a maximum message length of only 100 words
in any stage of the logs P exchange and sum routine.

2.2. Coarse Grid Solve. The presence of the global inverse, Eg tin (2.8) is
central to improving the condition of £ . However, its presence does imply the
possibility of significant serial and communication overhead in a parallel imple-
mentation. Because E is a relatively small K x K system, a common approach
to computing the repeated action of its inverse is to solve the coarse grid system
redundantly on each processor. For static geometries, the LU decomposition of
Eq can be computed once, and subsequent forward-back sweeps are in principle
fairly inexpensive. However, for large values of P and K the coarse grid solve
will dominate the calculation, and some level of parallelism must be introduced.
As the LU solves are inherently serial, an alternative approach is to explicitly
compute and store By !, s0 that the coarse grid solve is effected by a matrix-
vector product (see, e.g., [9]). After a log, P gather operation to construct the
right-hand side, the coarse grid solve is completed for each element by computing
a local inner-product of the right-hand side and the corresponding row of Eg !
which is stored on the appropriate processor. ‘

2.3. Finite Element Preconditioner. The original implementation of the
two-level pressure iteration employed a local spectral approximation to E as a
block preconditioner for E [3]. This approach works well when the order of
the approximation is small, e.g., N < 6. Unfortunately, the memory require-
ments scale as O(K N??) in R¢, which is prohibitive when d = 3 and N is large.
An alternative to the full spectral operator is to use a low-order finite element
discretization based upon the same Gauss-Legendre collocation points. There
have been extensive analyses of FEM based preconditioners for spectral opera-
tors in the past, e.g., [10,11], with the general result that the condition number
of Ly, Lsp is bounded and that nine point finite element stencils (in R?) tend
to work better than five point finite difference stencils. As we are consider-
ing general geometries, we have chosen the FEM approach, which is capable
of capturing more information about local deformation due to the additional
off-diagonal terms in the stiffness matrix. However, a sparse finite difference
operator coupled with a fast Poisson solver may be of interest if further reduc-
tion in memory is required at the expense of preconditioner performance. In the
present case, the FEM preconditioner provides an O(N) reduction in memory
and operation count for the preconditioning step. In practice, the savings must
be weighed against other costs in the Navier-Stokes solution.

In the context of the domain decomposition scheme (2.7-2.8), the FEM pre-
conditioniqg strategy is quite simple. We replace the local consistent Poisson
operator, By, with a set of K local standard Poisson operators, Eppyy, dis-
cretized using linear finite element bases within each subdomain. Each Pois-
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son problem is solved independently, owing to the decoupling afforded by the
functional decomposition (2.4). This is a significant improvement over previ-
ous FEM preconditioning strategies which result in large FEM problems which
must be solved, e.g., approximately by ILU schemes. Our experience has been
that introduction of approximate factorization at the FEM level can degrade the
preconditioner performance [2]. However, as the domain decomposition results
in a set of small local problems, a direct factorization is possible. Each Pois-
son operator, E rEM, 15 @ Neumann operator having a null space of dimension
unity corresponding to the average pressure level in each element. Thus, when
factoring Ep gy, we eliminate the last row and column.

For the baseline problem of Fig. 1, the FEM based preconditioner yielded
no appreciable change in iteration count which was 125 when using £ ~ Us. 126
when using Eppyy, to reach the same tolerance. Further details of the £ EM
implementation can be found in [4].

2.4. Performance. We compare the relative impact of each of the algorithm
modifications discussed in this section by plotting in Fig. 2 the solution time
required for the first step of the hemisphere calculation of Fig. 1 vs. number of
processors on the Intel Delta. Curve 1 is the time required for the original domain
decomposition solver (in 32 bit arithmetic), which clearly does not attain linear
speedup. Curve 2 shows the improved performance obtained with the new wire
frame update strategy, while Curve 3 shows the additional gain derived from the
distributed coarse grid solve. Note that these changes have little impact when
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FiGURE 2. Delta performance for first step of hemisphere prob-
lem of Fig. 1: Curve 1 - original two-level iteration scheme:
Curve 2 - same as 1, with improved wire-frame update scheme:
Curve 3 - same as 2, with parallel coarse grid solve; Curve 4 -
same as 3, with FEM based preconditioner.
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the amount of work on each processor is large, i.e., when P = 128. Curve 4
shows the benefit of the FEM based preconditioner, which yields an additional
two-fold reduction in solution time, and sufficient memory reduction to allow
this problem to run on 64 processors. Overall, a four-fold reduction in CPU
time on 512 processors is realized for this particular problem.

3. Orthogonolization

We have recently developed a technique which significantly reduces the re-
quired number of iterations for the preconditioned E-solver which can be gen-
eralized to a broad class of time dependent problems. We consider repeated
solution of the SPD system for the pressure at time level n:

(3.1) ' Ep*=f"

When employing iterative solvers in the advancement of evolution problems it
is common to use 1_7"_1 as an initial guess for p”, thereby solving only for the
perturbation, Ap™ = " - 1_7”“1. In fact, it is p—ossible to substantially improve
upon this initial guess by recognizing that one has available a sequence of inho-
mogeneities, f“ , and associated solutions, 1_)"“, satisfying (3.1). The underlying
idea is to remove from f™ all components for which we already know the solution,

and to solve only for the resulting perturbed problem.

We begin by assuming that we have stored a set of vectors F — {fl, .. ,f}

and solution vectors P = {Ql, ce, ﬁl} satisfying:
(3.2) B = ok=1{1,...0
(3.3) < zl, }'J > = 6ij y

where 6;; is the Kroenecker delta, and <> is an appropriately weighted inner-
product. The algorithm is based upon the following Gram-Schmidt procedure:
(3.4) At time level n, input I

ak:<i”,zk>, k=1,...,L
. ~k
fe— "= af

solve Ep = z to tolerance ¢
P e—p+ T onpt

update {P, F'}

return p"

To complete the procedure, we require a mechanism to update {]5, l*:‘} Initial
trials have shown the following approach to be successful. If I, is taken to be the
maximum number of vector pairs to be stored, ie., { < L, then at each time level:
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(3.5) If l=L) then: 1_:)1 p"/||Ep™||
[ — Ep"/|lEp"||
=1
else: i — Ep
a =<1} >, k=10
P F- S - S|
P e— (0 - X aph)/IIf - Zakf I
l=1+1
endif .
Here, ||.|| =< . >%. The procedure re-initializes {P, F} with the most recent

solution pair when the memory limits are exceeded, and then reconstructs a set
which satisfies (3.2-3.3). Notice that the intermediate variable i is used in place
of f , as the vector pair {p, ' } does not satisfy (3.2) exactly, owing to error due
to incomplete iteration.

The effectiveness of the orthogonalization technique depends upon the extent
to which f™ can be represented by the basis f In flows devoid of dynamics, the
pressure at time ¢ will be well represented by Pt 1. Hence, little improvement
can be expected for L > 1. For problems having a richer dynamical structure,
there is greater potential for savings. This is illustrated in Fig. 3, in which
we plot the number of pressure iterations, N, per step to compute flow past
a cylinder at Rep = 200, for L = 1, 3, and 21. The discretization consists of
K = 116 spectral elements of degree N = 9, with time step At = .0168. At each
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FIGURE 3. Pressure iteration count and time history of velocity
for impulsively started flow past a cylinder at Re = 200.
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step the iteration was carried out until the £2 norm of the residual was reduced
to 1075, For clarity, a 50 step windowed average of the data is presented. The
flow passes through three transient regimes: symmetric wake formation, wake
destabilization, and periodic vortex shedding. The first and third regimes are
characterized by a high level of dynamic activity, while the second is relatively
quiescent, as illustrated in the lower half of Fig. 3 by the time trace of u at a
point in the near wake region of the cylinder. Increasing L to 30 brought about
no additional reduction in iteration count.

We have also applied the orthogonalization technique with L = 11 to the
hemisphere problem of Fig. 1. For K = 512, N = 9 (260,000 pressure d.o.f.’s),
the average CPU time/step on the Delta (P = 512) was reduced from 15 to 10
seconds. For the same problem with N = 11 (512,000 pressure d.o.f.’s), the time
was reduced from 50 to 25 seconds/step.
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