Cc porary Math ti
Volume 157, 1994

A Parallel Element-by-Element Method
for Large-Scale Computations
with h — p— Finite Elements

S. FORESTI, S. HASSANZADEH, AND V. SONNAD

ABSTRACT. Element-by-Element (EBE) methods represent the lowest de-
gree of domain decomposition in finite element analysis. The use of EBE
strategies with iterative solvers allows to minimize storage requirements.
However, the process of recomputing elemental matrices can be exorbi-
tantly expensive in computation time, particularly when using high order
finite elements.

An operator, based on tensor products factorizations, can be used within
high order elements, to minimize the number of floating point operations.
We show in this paper a strategy for optimal computational efficiency, when
h — p— adaptation is used. The method is amenable to parallel computa-
tions and we describe the strategy for implementation on both shared and
distributed memory parallel computers.

1. Introduction

High order finite elements and h — p— adaptive strategies have been stud-
ied and succesfully used to more accurately and efficiently solve finite element
applications [3, 2, 12].

Despite the advantages and convenience of these methods, the solution of real
problems and industrial applications still leads to large-scale discretized systems.
that require very high storage and computational capabilities. Solution methods
and computational techniques that are scalable and take advantage of the archi-
tecture of paralle! and distributed computers, and superscalar microprocessors.
are the necessary complement for solving very large applications in practical
time.

Solution methods that rely on factoring the global matrix usually have high
storage and correspondingly high computational requirements because of the fill-

1991 Mathematics Subject Classification. Primary 65Y05, 65N30; Secondary 65F 10, 65Y10.
This paper is in final form and no version of it will be submitted for publication elsewhere

1994 American Mathematical Society
0271-4132/94 $1.00 4 $.25 per page

367

368 S. FORESTI, S. HASSANZADEH, AND V. SONNAD

in between the bands. The storage requirements increase almost quadratically
with the number of degrees of freedom: this severely limits the size of three-
dimensional problems that can be solved with reasonable memory requirements.

The storage required by iterative methods, if the global matrix is formed, is
lower than direct methods, because no fill-in occurs, but it still grows more than
linearly with the number of degrees of freedom; therefore, iterative methods by
themselves do not offer the best scalability potentials, and implementation on
massively parallel computers is still limited by increasingly large data sets.

Element-by-Element (EBE) methods, have been succesfully used in conjunc-
tion with iterative solution techniques to minimize the storage requirements of
traditional (h—) finite element applications, and therefore to solve larger prob-
lems on a given computer [11, 4, 13]. However, the use of p—adaptive finite
elements dramatically increases the computational complexity, and EBE meth-
ods in the traditional approach lead to a serious bottleneck. An operator, based
on tensor products factorizations, can be used within higher order elements, to
minimize the number of floating point operations [8, 9, 6]. We show in this
paper a strategy for optimal computational efficiency when h — p— adaptation
is used.

EBE methods represent the lowest degiee of domain decomposition in finite
element analysis, and are naturally implemented in parallel: we describe the
strategy for implementation on both shared and distributed memory parallel
computers.

2. Rapid operator for matrix-vector products

At the heart of any iterative solver is a matrix-vector product. In the finite
element approach, the matrix is obtained by assembling matrices corresponding
to individual elements. The result of a matrix-vector multiplication C; =A4;;U; ,
carried out on an element-by-element basis, consists of assembling the result of
elemental matrix-vector products C;,. This is equivalent to assembling the result
of element based integrals:

(2.1) G =W =W AU = Z/ ¥, W5, Uj, dfde
. . ~ Ja.

We consider hexahedral elements (quadrilateral in 2-D), and we use the mass
operator to simplify the description. More details can be found in [8].

The computation can be carried out either way: the former is to form ele-
mental matrices and perform matrix-vector products; the latter is to compute
elemental integrals. If tensor-product basis functions are used, the calculations
of the integrals can be performed by using tensor-product factorization, (Tensor-
product basis functions are usually used in high order elements, or p-version [1}).

The “rapid” evaluation with the use of tensor-product basis functions is here

PARALLEL ELEMENT-BY-ELEMENT METHOD 369

illustrated with the mass operator: We define p basis functions per dimension:

(22) Walr,51) = o, (1) . (5) Yoo (8 \f{

The evaluation of the vector C;_ can be represented in this form:
(2.3)
1ol gl
Cis :Ca:C’ar‘lsat :/]_/ / 'Z/}ar,l/)asq?bat ’djﬁrwﬂswﬂtUﬁrﬂsﬁt dr dS dt'
—1J-1J-1

(¥ ar,as,04 =1...p and contracting the indices 3, Bs, 5;).

When numerical integration is performed, integrals are replaced by weighted
sums of the functions evaluated at the integration points. Let us indicate
with 797, 59", 19" (V ¢",¢%g" = 1...g) the points of a numerical quadrature
and w9, w9, w9 the corresponding weights. The one dimensional basis func-
tions, evaluated at the integration points, are p X g matrices, denoted by wg: =

T s & t . t
Yo, (r9), VI =1a,(s7), Y, =Ya,(s9). Therefore,
r s t . s ot td s i
(24) Carasat = ¢gr ?/)ZS gt ¢g1 wg» ?,/)gvt Uﬁrﬁs,@’t wg ’LL’g ’Lb"q .

The computation is performed by contracting the indices one step at a time (in
order of 8., 8, Bt,9", g%, '), forming a sequence of temporary tensors with three
indices.

The computational requirements vary according to the order of polynomials:
we are trying to address the problem of choosing the most efficient way to carry
out these results. Table 1 shows the number of operation and storage required
to evaluate the vector C;,, for every element e. The exact operation count
depends on the operator used: in [6] the 3-dimensional equations of elasticity
are considered. However, the numerical counts showed that the threshold of the
inequalities for most differential operators lies in the same polynomial number p :
greater than 3 in 3-D, and greater than 5 in 2-D. The optimal strategy consists
then in using rapid integral evaluation in those in elements that are more than
cubic (5-th order in 2-D), and choosing integral evaluation with no tensor product
factorization in cubic (or less) elements (5-th order or less in 2-D). In this latter
case, forming an elemental matrix and performing a matrix-vector product is
not convenient, unless the elemental matrix was managed to be formed once and
for all the iterations, and kept in main storage.

3. Parallel implementation

The evaluation of the global matrix-vector product C;. carried out on an
element-by-element basis. is naturally implemented in parallel by the simple
strategy of defining elemental computations as processes, and assigning them to
different processors. The computation of each elemental vector C;, is completely

370 S. FORESTI, S. HASSANZADEH, AND V. SONNAD

2-Dimensions | 3-Dimensions
storage flops | storage flops

form matrix 8 o(p®) | p* o(p*)
matrix-véctor P8 2% | pt 2p*
integral o(p®) o(p®) | o(p?) o(p*)

rapid evaluation | o(p®) o(p*) [0(p?) o(p®)
TABLE 1. Storage and operation count for computing elemental results.

independent of other elements, and can be performed either with rapid integral
evaluation, or matrix-vector product as discussed in the previous paragraph.

(3.1) Ci= G =W 4,0, = > / W V. Uj, dQ.
e e e Qe

The algorithm has a parallel content that is close to 100%, and relatively coarse
granularity, particularly when using high order basis functions.

The implementation on a shared-memory computer, is accomplished by the
simple strategy of assigning elemental processes to processors as they become
available, with a loop over the elements. A key advantage of this approach, is
that there is no need to partition the elements among the processors prior to
the computations. This takes full advantage of a shared memory architecture,
where all data is available to all processors at all times. The problem of load
balancing is avoided entirely, because it is automatically adjusted at computation
time. The most efficient data structure is to store assembled (global) data in
the shared memory. A copy of elemental data is copied in temporary storage as
needed, by yanking the pertinent components from the assembled data, (a pointer
vector indicates the location in the global vector of every term of the elemental
vector). Elemental data are then processed, and results are reassembled into
the global results, using the same pointer. This is the only stage with data
dependencies: it may happen that a single location needs to be updated by two
or more processors simultaneously. - These conflicts are resolved by a locking
mechanism that serializes the writing into the location, and a synchronization
barrier between all processors ensures that the subsequent task in the program
Is executed when the assembly has been completed.

The bmplementation on a distributed-memory computer, requires that ele-
ments be partitioned among processors prior to the computations. This partition
has to be studied according to a criterion of load balancing and minimal com-
munications: each processors is assigned a cluster of neighboring elements. The
appropriate data structure is to store a copy of elemental data for each element
in the cluster in the local memory of the corrispondent processor. Components
on the boundaries between elements in a cluster will be repeated; however, this
allows elements to be reassigned to a different processor at a later stage of the
computation in order to adjust the load balance, if changes in the polynomial
order occur due to adaptation. Bach processor computes sequentially elemental

PARALLEL ELEMENT-BY-ELEMENT METHOD 371

processes of the assigned cluster, independently of the clusters on other pro-
cessors. Coeficients that are on boundaries between elements are sequentially
updated in the local memory, if the elements are in the same cluster, and ex-
changed via message passing, if the elements are in different clusters. The im-
plementation of elemental processes is dominated by tensor products. In the
former case, a matrix-vector product C;, = A, ; U;, is performed, where the
matrix A;_; = fﬂe W; ;. df)e has first to be formed, or can be formed and
stored once and for all, if the storage is enough.

In the latter case, the rapid element operator consists of a sequence of tensor
products of this type: WJ.(T?IW) = ¢ W/i(?;kl)), where i is the index being con-
tracted at the step n. Tensors W are stored as matrices by grouping the indices
that are not contracted. As a result of the appropriate order chosen for the in-
dices, the resulting computation consists of matrix-matrix products with stride
1.

In both cases, the computation can be performed by using Basic Linear Alge-
bra Routines (BLAS), that are optimized for a particular architecture. and the
array sizes and ordering is such that the computation is carried out at close to
peak performance, on vector or RISC processors. Moreover, the level of poly-
nomials and number of integration points, used respectively in the both cases,
are generally of such an order that all the tensors mentioned above fit in cache
memories.

4. Numerical results and conclusions

In order to illustrate the computational efficiency of this algorithm, we have
solved the three-dimensional equations of linear elasticity. The physical domain
is a cube, which has been discretized with 343 elements (7 per axis direction):
we have deliberately distorted the elements in order to be representative of a
complex geometry. The goal of this work was to solve problems of scaling size.
reaching the order of the million of degrees of freedom. We defined a set of prob-
lems by increasing the level of polynomials and solved them with the Conjugate
Gradient method. We notice that, in this context, we have not used any form of
preconditioner. Our previous work [6] showed that it is possible to improve the
convergence rate, by using “lower p—level” preconditioners. However, the use
of these preconditioners requires storage that increases more than linearly with
the number of degrees of freedom: the solution of problems with one million
degrees of freedom can not be solved “in core” memory. Moreover, lower level
preconditioners are not inherently parallelizable. Therefore, the use of these pre-
conditioners becomes impractical in this context. Here we show how this method
allows the solution of very large and scalable problems: we will address the issue
of opportune parallel and low storage preconditioners in future work.

Here we analyze the computational requirements on an IBM 3090/600 VF.
a shared memory mainframe with six vector processors. For a given level of

372 S. FORESTI, S. HASSANZADEH, AND V. SONNAD

polynomials, table 2 shows degrees of freedom, total storage, elapsed time for
one iteration (v corresponds to the best implementation on 1 vector processor, p
on 6 vector processors, and s is the speedup), number of iterations to achieve a
tolerance of 103, and elapsed time for the solution on 6 vector processors. The
times were measured during a benchmark with dedicated system.

Pol || DGF Storage Iteration time Tot Iter | Tot Time
_ v P s

2 6,591 | 0.9 Mbytes | 1.59” 0.32” 545 96 5

6 || 206,763 | 12.5 Mbytes | 6.66” 1.25" 543 607 17

10 || 985,527 | 54.0 Mbytes | 22.02" 4.18” 5.39 1958 147

TABLE 2. Degrees of freedom, storage, elapsed time for one
iteration (v = serial, p = parallel, and s = speedup), iterations
to 10~2 tolerance, and elapsed time for parallel solution.

The storage as well as the elapsed time increase linearly with the number of
degrees of freedom: therefore, the performance of this algorithm scales to very
large problems.

In conclusion, we have presented an Element-by-Element method whereby
matrix-vector products, arising from the iterative solutions of A—p—version finite
element applications, can be computed with optimal computational efficiency.
The method is amenable to parallel computations and we describe the strategy
for implementation on both shared and distributed memory parallel computers.
This method allows the solution of increasingly large finite element problems
taking advantage of superscalar microprocessors, and of the scalable architecture
of parallel and distributed computers, Applications of this method to large-scale
elastodynamic problems can be found in [7, 10].

REFERENCES

1. 1. Babiiska, M. Griebel, and J. Pitkaranta. The problem of selecting the shape functions
for a p- type finite clement. Int. J. Num. Meth. Engg., 28:1891-1908, 1989.

2. 1. Babiiska and M. Suri. The p- and h-p versions of the finite element method: an overview.
Technical Report BN-1101, Institute for Physical Science and Technology, University of
Maryland, 1989.

3. 1. Babtska, B.A. Szabo, and I.N. Katz. The p-version of the finite element method. SIAM
J. Num. Anal., 18:515-545, 1981.

4. G.F. Carey and B.N. Jiang. Element-by-element preconditioned conjugate gradients al-
gorithm for compressible flow. In W.K. Liu, T. Belytschko, and K.C. Park, editors, Pro-
ceedings of the International Conference on Innovative Methods for Nonlinear Problems,
pages 41-49. Pineridge Press. Swansea, 1984.

. 5. Foresti, G. Brussino, S. Hassanzadeh, and V. Sonnad. Multilevel solution method for
the p-version of finite elements. Computer Physics Communications, 53:349-355, 1989.

6. S. Foresti, S. Hassanzadeh, H. Murakami, and V. Sonnad. A comparison of preconditioned

iterative solution techniques with rapid operator evaluation against direct solution meth-
ods. Int. J. Num. Meth. Eng., 32(5):1137-1144, 1991.

ot

7.

10.

11.

12.
13.

PARALLEL ELEMENT-BY-ELEMENT METHOD 373

S. Foresti, S. Hassanzadeh, H. Murakami, and V. Sonnad. Finite element analysis of very
large-scale structural problems using minimal memory. Technical Report USI-7, Utah Su-
percomputing Institute, University of Utah, 1991.

. 8. Foresti, S. Hassanzadeh, H. Murakami, and V. Sonnad. Parallel rapid operator for

iterative finite element solvers on a shared memory machine. Parallel Computing, 18(12),
1992.

- S. Foresti, S. Hassanzadeh, H. Murakami, and V. Sonnad. Parallel rapid operator for

iterative finite element solvers on a shared memory machine. Technical Report USI-31,
Utah Supercomputing Institute, University of Utah, 1992.

S. Hassanzadeh, S. Foresti, H. Murakami, and V. Sonnad. Minimal storage finite element
solution of large-scale three-dimensional elastodynamic problems. In Proceedings of Eighth
National Conference on Computing in Ciwil Engineering, ASCE, Dallas, Texas, 1992.

T. Hughes, 1. Levit, and J. Winget. Element-by-element implicit algorithms for heat con-
duction. J. Engg. Mech, 109:576-585, 1983.

B.A. Szabo and 1. Babiiska. Finite Element Analysis. Wiley, 1991.

J. Winget and T. Hughes. Solution algorithms for nonlinear transient heat conduction
analysis employing element-by-element iterative strategies. Comp. Meth. Appl. Mech. Eng.,
52:711-815, 1985.

UTAH SUPERCOMPUTING INSTITUTE, UNIVERSITY OF UTAH, SALT LAKE CrTy, UTaHn 84112
E-mail address: stefano@osiris.usi.utah.edu

Fujirsu AMERICA, INC., SAN JOSE, CA 95134
E-mail address: siamak@fai.com

ADVANCED WORKSTATION DivisioN, IBM CORPORATION, AUSTIN, TEXAS 78758
E-mail address: sonnad@ausvm6.vnet.ibm.com

